Episodios

  • Working with Self-Managed Nodes and Managing Kubernetes Deployments
    Jul 9 2024
    In this episode, hosts Lois Houston and Nikita Abraham speak with senior OCI instructor Mahendra Mehra about the capabilities of self-managed nodes in Kubernetes, including how they offer complete control over worker nodes in your OCI Container Engine for Kubernetes environment. They also explore the various options that are available to effectively manage your Kubernetes deployments. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Hello and welcome to the Oracle University Podcast! I’m Nikita Abraham, Principal Technical Editor with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi everyone! Last week, we discussed how OKE virtual nodes can offer you a complete serverless Kubernetes experience. Nikita: Yeah, and in today’s episode, we’ll focus on self-managed nodes, where you get complete control over the worker nodes within your OKE environment. We’ll also talk about how you can manage your Kubernetes deployments. 00:57 Lois: To tell us more about this, we have Mahendra Mehra, a senior OCI instructor with Oracle University. Hi Mahendra! Welcome back! Let’s get started with self-managed nodes. Can you tell us what they are? Mahendra: In Container Engine for Kubernetes, a self-managed node is essentially a worker node that you personally create and host on a compute instance or instance pool within the compute service. Unlike managed nodes or virtual nodes, self-managed nodes are not grouped into node pools by default. They are often referred to as Bring Your Own Nodes, also abbreviated as BYON. If you wish to streamline administration and manage multiple self-managed nodes collectively, you can utilize the compute service to create a compute instance pool for hosting these nodes. This allows for greater flexibility and customization in your Kubernetes environment. 01:58 Nikita: Mahendra, what are some practical usage scenarios for OKE self-managed nodes? Mahendra: These nodes offer a range of advantages for specific use cases. Firstly, for specialized workloads, leveraging the compute service allows you to configure compute instances with shapes and image combination that may not be available for managed nodes or virtual nodes. This includes options like GPU shapes for hardware accelerated workloads or high frequency processor cores for demanding high-performance computing tasks. Secondly, if you require complete control over your compute instance configuration, self-managed nodes are the ideal choice. This gives you the flexibility to tailor each node to your specific requirements. Additionally, self-managed nodes are particularly well suited for Oracle Cloud Infrastructure cluster networks. These nodes provide high bandwidth, low latency RDMA connectivity, making them a preferred option for certain networking setups. Lastly, the use of compute instance pools with self-managed nodes enables the creation of infrastructure for handling complex distributed computing tasks. This can greatly enhance the efficiency of your Kubernetes environment. Consider these points carefully to determine the optimal use of OKE self-managed nodes in your deployments. 03:30 Lois: What do we need to consider before creating a self-managed node and integrating it into a cluster? Mahendra: There are two crucial aspects to address. Firstly, you need to confirm that the cluster to which you plan to add a self-managed node is configured appropriately. Secondly, it's essential to choose the right image for the compute instance hosting the self-managed node. 03:53 Nikita: Can you dive a little deeper into these prerequisites? Mahendra: To successfully integrate a self-managed node into your cluster, you must ensure that the cluster is an enhanced cluster. This is a crucial prerequisite for the addition of self-managed nodes. The flannel CNI plugin for pod networking should be utilized, not the VCN-native pod networking CNI plugin. This ensures optimal pod networking for your self-managed nodes. The control plane nodes of the cluster must be running Kubernetes version 1.25 or later. This is essential for compatibility and optimal performance. Lastly, maintain compatibility between the Kubernetes version on control plane nodes ...
    Más Menos
    16 m
  • Working with OKE Virtual Nodes
    Jul 2 2024
    Want to gain insights into how virtual nodes provide a serverless Kubernetes experience? Join hosts Lois Houston and Nikita Abraham, along with senior OCI instructor Mahendra Mehra, as they compare managed nodes and virtual nodes. Continuing from the previous episode, they explore how virtual nodes enhance Kubernetes deployments in Oracle Cloud Infrastructure. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Principal Technical Editor. Nikita: Hey everyone! In our last episode, we examined OCI Container Engine for Kubernetes, including its key features and benefits. Lois: Yeah, that was an interesting one. Today, we’re going to discuss virtual nodes and their role in enhancing Kubernetes deployments in Oracle Cloud Infrastructure. Nikita: We’re going to compare virtual nodes and managed nodes, and look at their differences and advantages. To take us through all this, we have Mahendra Mehra with us. Mahendra is a senior OCI instructor with Oracle University. 01:09 Lois: Hi Mahendra! From our discussion last week, we know that when creating a node pool with Container Engine for Kubernetes, we have the option of specifying the type of Oracle nodes as either managed nodes or virtual nodes. But I’m sure there are some key differences in the features supported by each type, right? Mahendra: The primary point of differentiation between virtual nodes and managed nodes is in their management approach. When it comes to managed nodes, users are responsible for managing the nodes. They have the flexibility to configure them to meet the specific requirements. Users are also responsible for upgrading Kubernetes on managed nodes and for managing cluster capacity. You can create managed nodes and node pools in both basic clusters and enhanced clusters, whereas in virtual nodes, virtual nodes provide a serverless Kubernetes, experience, enabling users to run containerized applications at scale. The Kubernetes software is upgraded and security patches are applied while respecting application's availability requirements. You can only create virtual nodes and virtual node pools in enhanced clusters. 02:17 Nikita: What about differences in terms of resource allocation? Are there any differences we should be aware of? Mahendra: When it comes to managed nodes, the resource allocation is at the node pool level and the users specify CPU and memory resource requirements for a given node pool. In the virtual nodes, the resource allocation is done at the pod level, where you can specify the CPU and memory resource requirements, but this time, as requests and limits in the pod specification. 02:45 Lois: What about differences in the approach to load balancing? Mahendra: When it comes to managed nodes, load balancing is between the worker nodes, whereas in virtual nodes, load balancing is between pods. Also, load balancer security list management is never enabled, and you always must manually configure security rules. When using virtual nodes, load balances distribute traffic among pods' IP addresses and then assign node port. 03:12 Lois: And when it comes to pod networking? Mahendra: Under managed nodes, both the VCN-Native Pod Networking CNI plugin and the flannel CNI plugin are supported. When it comes to virtual nodes, only VCN-Native Pod Networking is supported. Also, only one VNIC is attached to each virtual node. Remember, IP addresses are not pre-allocated before pods are created. And the VCN-Native Pod Networking CNI plugin is not shown as running in the kube-system namespace. Pod subnet route tables must have route rules defined for a NAT gateway and a service gateway. 03:48 Nikita: OK… I have a question, Mahendra. When it comes to scaling Kubernetes clusters and node pools, can users adjust the cluster capacity in response to their changing requirements? Mahendra: When it comes to managed nodes, customers can scale the cluster and node pool up and down by changing the number of managed node pools and nodes respectively. They also have an option to enable autoscaling to automatically scale managed node pools and...
    Más Menos
    14 m
  • Introduction to OCI Container Engine for Kubernetes
    Jun 25 2024
    Curious about how OCI Container Engine for Kubernetes (OKE) can transform the way your development team builds, deploys, and manages cloud-native applications? Listen to hosts Lois Houston and Nikita Abraham explore OKE's key features and benefits with senior OCI instructor Mahendra Mehra. Mahendra breaks down complex concepts into digestible bits, making it easy for you to understand the magic behind OKE. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:25 Nikita: Hello and welcome to the Oracle University Podcast. I’m Nikita Abraham, Principal Technical Editor with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! If you’ve been listening to us these last few weeks, you’ll know we’ve been discussing containerization, the Oracle Cloud Infrastructure Registry, and the basics of Kubernetes. Today, we’ll dive into the world of OCI Container Engine for Kubernetes, also referred to as OKE. Nikita: We’re joined by Mahendra Mehra, a senior OCI instructor with Oracle University, who will take us through the key features and benefits of OKE and also talk about working with managed nodes. Hi Mahendra! Thanks for joining us today. 01:09 Lois: So, Mahendra, what is OKE exactly? Mahendra: Oracle Cloud Infrastructure Container Engine for Kubernetes is a fully managed, scalable, and highly available service that empowers you to effortlessly deploy your containerized applications to the cloud. But that's just the beginning. OKE can transform the way you and your development team build, deploy, and manage cloud native applications. 01:36 Nikita: What would you say are some of its most defining features? Mahendra: One of the defining features of OKE is the flexibility it offers. You can specify whether you want to run your applications on virtual nodes or opt for managed nodes. Regardless of your choice, Container Engine for Kubernetes will efficiently provision them within your existing OCI tenancy on Oracle Cloud Infrastructure. Creating OKE cluster is a breeze, and you have a couple of fantastic tools at your disposal-- the console and the rest API. These make it super easy to get started. OKE relies on Kubernetes, which is an open-source system that simplifies the deployment, scaling, and management of containerized applications across clusters of hosts. Kubernetes is an incredible system that groups containers into logical units known as pods. And these pods make managing and discovering your applications very simple. Not to mention, Container Engine for Kubernetes uses Kubernetes versions that are certified as conformant by the Cloud Native Computing Foundation, also abbreviated as CNCF. And here's the icing on the cake. Container Engine for Kubernetes is ISO-compliant. The other two ISO-IEC standards—27001, 27017, and 27018. That's your guarantee of a secure and reliable platform. 03:08 Lois: That’s great. But how do you access all this power? Mahendra: You can define and create your Kubernetes cluster using the intuitive console and the robust rest API. Once your clusters are up and running, you can manage them using the Kubernetes command line, also known as kubectl, the user-friendly Kubernetes dashboard, and the powerful Kubernetes API. 03:32 Nikita: I love the idea of an intuitive console and being able to manage everything from a centralized place. Lois: Yeah, that’s fantastic! Mahendra, can you talk us through the magic that happens behind the scenes? What’s Oracle’s role in all this? Mahendra: All the master nodes or control plane nodes are managed by Oracle. This includes components like etcd, the API server, and the controller manager among others. To ensure reliability, we make sure multiple copies of these master components are distributed across different availability domains. And we don't stop there. We also manage the Kubernetes dashboard and even handle the self-healing mechanism of both the cluster and the worker nodes. All of these are meticulously created and managed within your Oracle tenancy. 04:19 Lois: And what happens at the user’s end? What is their responsibility? Mahendra: At your end, you have the power to manage your worker nodes. Using different compute shapes, you...
    Más Menos
    18 m
  • Basics of Kubernetes
    Jun 18 2024
    In this episode, Lois Houston and Nikita Abraham, along with senior OCI instructor Mahendra Mehra, dive into the fundamentals of Kubernetes. They talk about how Kubernetes tackles challenges in deploying and managing microservices, and enhances software performance, flexibility, and availability. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Lois: Hello and welcome to another episode of the Oracle University Podcast. I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Principal Technical Editor. Nikita: Hi everyone! We’ve spent the last two episodes getting familiar with containerization and the Oracle Cloud Infrastructure Registry. Today, it’s going to be all about Kubernetes. So if you've heard of Kubernetes but you don't know what it is, or you've been playing with Docker and containers and want to know how to take it to the next level, you’ll want to stay with us. Lois: That’s right, Niki. We’ll be chatting with Mahendra Mehra, a senior OCI instructor with Oracle University, about the challenges in containerized applications within a complex business setup and how Kubernetes facilitates container orchestration and improves its effectiveness, resulting in better software performance, flexibility, and availability. 01:20 Nikita: Hi Mahendra. To start, can you tell us when you would use Kubernetes? Mahendra: While deploying and managing microservices in a distributed environment, you may run into issues such as failures or container crashes. Issues such as scheduling containers to specific machines depending upon the configuration. You also might face issues while upgrading or rolling back the applications which you have containerized. Scaling up or scaling down containers across a set of machines can be troublesome. 01:50 Lois: And this is where Kubernetes helps automate the entire process? Mahendra: Kubernetes is a portable, extensible, open source platform for managing containerized workloads and services that facilitates both declarative configuration and automation. You can think of a Kubernetes as you would a conductor for an orchestra. Similar to how a conductor would say how many violins are needed, which one play first, and how loud they should play, Kubernetes would say, how many webserver front-end containers or back-end database containers are needed, what they serve, and how many resources are to be dedicated to each one. 02:27 Nikita: That’s so cool! So, how does Kubernetes work? Mahendra: In Kubernetes, there is a master node, and there are multiple worker nodes. Each worker node can handle multiple pods. Pods are just a bunch of containers clustered together as a working unit. If a worker node goes down, Kubernetes starts new pods on the functioning worker node. 02:47 Lois: So, the benefits of Kubernetes are… Mahendra: Kubernetes can containerize applications of any scale without any downtime. Kubernetes can self-heal containerized applications, making them resilient to unexpected failures. Kubernetes can autoscale containerized applications as for the workload and ensure optimal utilization of cloud resources. Kubernetes also greatly simplifies the process of deployment operations. With Kubernetes, however complex an operation is, it could be performed reliably by executing a couple of commands at the most. 03:19 Nikita: That’s great. Mahendra, can you tell us a bit about the architecture and main components of Kubernetes? Mahendra: The Kubernetes cluster has two main components. One is the control plane, and one is the data plane. The control plane hosts the components used to manage the Kubernetes cluster. And the data plane basically hosts all the worker nodes that can be virtual machines or physical machines. These worker nodes basically host pods which run one or more containers. The containers running within these pods are making use of Docker images, which are managed within the image registry. In case of OCI, it is the container registry. 03:54 Lois: Mahendra, you mentioned nodes and pods. What are nodes? Mahendra: It is the smallest unit of computing hardware within the Kubernetes. Its work is to encapsulate one or more applications as containers. A ...
    Más Menos
    17 m
  • Oracle Cloud Infrastructure Registry
    Jun 11 2024
    In this episode, hosts Lois Houston and Nikita Abraham, along with senior OCI instructor Mahendra Mehra, discuss how Oracle Cloud Infrastructure Registry simplifies the development-to-production workflow for developers. Listen to Mahendra explain important container registry concepts, such as images, repositories, image tags, and image paths, as well as how they relate to each other. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Hello and welcome to the Oracle University Podcast. I’m Nikita Abraham, Principal Technical Editor with Oracle University, and I’m joined by Lois Houston, Director of Innovation Programs. Lois: Hi there! This is our second episode on OCI Container Engine for Kubernetes, and today we’re going to spend time discussing container registries with our colleague and senior OCI instructor, Mahendra Mehra. Nikita: We’ll talk about how you can become proficient in managing Oracle Cloud Infrastructure Registry, a vital component in your container workflow. 00:58 Lois: Hi Mahendra, can you explain what Oracle Cloud Infrastructure Registry, or OCIR, is and how it simplifies the container image management process? Mahendra: OCIR is an Oracle-managed registry designed to simplify the development-to-production workflow for developers. It offers a range of functionalities, serving as a private docker registry for internal use where developers can easily store, share, and manage container images. The strength of OCIR lies in its high available and scalable architecture. Leveraging OCI to ensure reliable deployment of applications, developers can use OCIR not only as a private registry but also as a public registry, facilitating the pulling of images from public repositories for users with internet access. 01:55 Lois: But what sets OCIR apart? Mahendra: What sets OCIR apart is its compliance with the Open Container Initiative standards, allowing the storage of container images conforming to the OCI specifications. It goes a step further by supporting manifest lists, sometimes known as multi-architecture images, accommodating diverse architectures like ARM and AMD64. Additionally, OCIR extends its support to Helm charts. Security is a priority with OCIR, offering private access through a service gateway. This means that OCI resources within a VCN in the same region can securely access OCIR without exposing them to the public internet. 02:46 Nikita: OK. What are some other key advantages of OCIR? Mahendra: Firstly, OCIR seamlessly integrates with the Container Engine for Kubernetes, ensuring a cohesive container management experience. In terms of security, OCIR provides flexibility by allowing registries to be either private or public, giving administrators control over accessibility. It is intricately integrated with IAM, offering straightforward authentication through OCI Identity. Another notable benefit is regional availability. You can efficiently pull container images from the same region as your deployments. For high-performance, availability, and low-latency image operations, OCIR leverages the robust infrastructure of OCI, enhancing the overall reliability of image push and pull operations. OCIR ensures anywhere access, allowing you to utilize container CLI for image operations from various locations, be it on the cloud, on-premises, or even from personal laptops. 03:57 Lois: I believe OCIR has repository quotas? Is there a cap on them? Mahendra: In each enabled region for your tenancy, you can establish up to 500 repositories with a cumulative storage limit of 500 GB. Each repository is capable of holding up to 100,000 images. Importantly, charges apply only for stored images. 04:21 Nikita: That’s good to know, Mahendra. I want to move on to basic container registry concepts. Maybe we can start with what an image is. Mahendra: Image is basically a read-only template with instructions for creating a container. It holds the application that you want to run as a container, along with any dependencies that are required. Container registry is an Open Container Initiative-compliant registry. As a result, you can store any artifacts that conform to Open Container Initiative specifications, such as Docker images, manifest ...
    Más Menos
    15 m
  • What is Containerization?
    Jun 4 2024
    Welcome to a new season of the Oracle University Podcast, where we delve deep into the world of OCI Container Engine for Kubernetes. Join hosts Lois Houston and Nikita Abraham as they ask senior OCI instructor Mahendra Mehra about the transformative power of containers in application deployment and why they're so crucial in today's software ecosystem. Uncover key differences between virtualization and containerization, and gain insights into Docker components and commands. Getting Started with Oracle Cloud Infrastructure: https://oracleuniversitypodcast.libsyn.com/getting-started-with-oracle-cloud-infrastructure-1 Networking in OCI: https://oracleuniversitypodcast.libsyn.com/networking-in-oci OCI Identity and Access Management: https://oracleuniversitypodcast.libsyn.com/oci-identity-and-access-management OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. --------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Lois: Hello and welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Principal Technical Editor. Nikita: Hi everyone! Welcome to a new season of the Oracle University Podcast. This time around, we’re going to delve into the world of OCI Container Engine for Kubernetes, or OKE. For the next couple of weeks, we’ll cover key aspects of OKE to help you create, manage, and optimize Kubernetes clusters in Oracle Cloud Infrastructure. 00:58 Lois: So, whether you’re a cloud native developer, Kubernetes administrator and developer, a DevOps engineer, or site reliability engineer who wants to enhance your expertise in leveraging the OCI OKE service for cloud native application solutions, you’ll want to tune in to these episodes for sure. And if that doesn’t sound like you, I’ll bet you will find the season interesting even if you’re just looking for a deep dive into this service. Nikita: That’s right, Lois. In today’s episode, we’ll focus on concepts of containerization, laying the foundation for your journey into the world of containers. And taking us through all this is Mahendra Mehra, a senior OCI instructor with Oracle University. 01:38 Lois: Hi Mahendra! We’re so glad to start our look at containerization with you today. Could you give us an overview? Why is it important in today's software world? Mahendra: Containerization is a form of virtualization, operates by running applications in isolated user spaces known as containers. All these containers share the same underlying operating system. The container engine, pivotal in containerization technologies and container orchestration platforms, serves as the container runtime environment. It effectively manages the creation, deployment, and execution of containers. 02:18 Lois: Can you simplify this for a novice like me, maybe by giving us an analogy? Mahendra: Imagine a container as a fully packaged and portable computing environment. It's like a digital suitcase that holds everything an application needs to run—binaries, libraries, configuration files, dependencies, you name it. And the best part, it's all encapsulated and isolated within container. 02:46 Nikita: Mahendra, how is containerization making our lives easier today? Mahendra: In olden days, running an application meant matching it with your machine's operating system. For example, Windows software required a Windows machine. However, containerization has rewritten this narrative. Now, it's ancient history. With containerization, you create a single software package, a container that gracefully runs on any device or operating systems. What's fascinating is that these containers seamlessly run while sharing the host operating system. The container engine is like a shadow abstracted from the host operating system with limited access to underlying resources. Think of it as a super lightweight virtual machine. The beauty of this, the containerized application becomes a globetrotter, seamlessly running on bare metal within VMs or on the cloud platforms without needing tweaks for each environment. 03:52 Nikita: How is containerization different from traditional virtualization? Mahendra: On one side, we have traditional virtualization. It’s like having multiple houses on a ...
    Más Menos
    15 m
  • Encore Episode: OCI AI Services
    May 28 2024
    Listen to Lois Houston and Nikita Abraham, along with Senior Principal Product Manager Wes Prichard, as they explore the five core components of OCI AI services: language, speech, vision, document understanding, and anomaly detection, to help you make better sense of all that unstructured data around you. Oracle MyLearn: https://mylearn.oracle.com/ou/learning-path/become-an-oci-ai-foundations-associate-2023/127177 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Himanshu Raj, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 The world of artificial intelligence is vast and everchanging. And with all the buzz around it lately, we figured it was the perfect time to revisit our AI Made Easy series. Join us over the next few weeks as we chat about all things AI, helping you to discover its endless possibilities. Ready to dive in? Let’s go! 00:33 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:46 Nikita: Welcome to the Oracle University Podcast! I’m Nikita Abraham, Principal Technical Editor with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! In our last episode, we spoke about OCI AI Portfolio, including AI and ML services, and the OCI AI infrastructure. Nikita: Yeah, and in today’s episode, we’re going to continue down a similar path and take a closer look at OCI AI services. 01:16 Lois: With us today is Senior Principal Product Manager, Wes Prichard. Hi Wes! It’s lovely to have you here with us. Hemant gave us a broad overview of the various OCI AI services last week, but we’re really hoping to get into each of them with you. So, let’s jump right in and start with the OCI Language service. What can you tell us about it? Wes: OCI Language analyzes unstructured text for you. It provides models trained on industry data to perform language analysis with no data science experience needed. 01:48 Nikita: What kind of big things can it do? Wes: It has five main capabilities. First, it detects the language of the text. It recognizes 75 languages, from Afrikaans to Welsh. It identifies entities, things like names, places, dates, emails, currency, organizations, phone numbers--14 types in all. It identifies the sentiment of the text, and not just one sentiment for the entire block of text, but the different sentiments for different aspects. 02:17 Nikita: What do you mean by that, Wes? Wes: So let's say you read a restaurant review that said, the food was great, but the service sucked. You'll get food with a positive sentiment and service with a negative sentiment. And it also analyzes the sentiment for every sentence. Lois: Ah, that’s smart. Ok, so we covered three capabilities. What else? Wes: It identifies key phrases in the text that represent the important ideas or subjects. And it classifies the general topic of the text from a list of 600 categories and subcategories. 02:48 Lois: Ok, and then there’s the OCI Speech service... Wes: OCI Speech is very straightforward. It locks the data in audio tracks by converting speech to text. Developers can use Oracle's time-tested acoustic language models to provide highly accurate transcription for audio or video files across multiple languages. OCI Speech automatically transcribes audio and video files into text using advanced deep learning techniques. There's no data science experience required. It processes data directly in object storage. And it generates timestamped, grammatically accurate transcriptions. 03:22 Nikita: What are some of the main features of OCI Speech? Wes: OCI Speech supports multiple languages, specifically English, Spanish, and Portuguese, with more coming in the future. It has batching support where multiple files can be submitted with a single call. It has blazing fast processing. It can transcribe hours of audio in less than 10 minutes. It does this by chunking up your audio into smaller segments, and transcribing each segment, and then joining them all back together into a single file. It provides a confidence score, both per word and per transcription. It punctuates transcriptions to make the text more readable and to allow downstream systems to process the text with less friction. And it has SRT file support. 04:06 Lois: SRT? What’s that? Wes: SRT is the most popular closed caption output file format. And with this SRT support, users can add closed captions to their video. OCI Speech makes transcribed text more readable to resemble how humans write. This is called ...
    Más Menos
    17 m
  • Encore Episode: The OCI AI Portfolio
    May 21 2024
    Oracle has been actively focusing on bringing AI to the enterprise at every layer of its tech stack, be it SaaS apps, AI services, infrastructure, or data. In this episode, hosts Lois Houston and Nikita Abraham, along with senior instructors Hemant Gahankari and Himanshu Raj, discuss OCI AI and Machine Learning services. They also go over some key OCI Data Science concepts and responsible AI principles. Oracle MyLearn: https://mylearn.oracle.com/ou/learning-path/become-an-oci-ai-foundations-associate-2023/127177 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Himanshu Raj, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 The world of artificial intelligence is vast and everchanging. And with all the buzz around it lately, we figured it was the perfect time to revisit our AI Made Easy series. Join us over the next few weeks as we chat about all things AI, helping you to discover its endless possibilities. Ready to dive in? Let’s go! 00:33 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:46 Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Principal Technical Editor. Nikita: Hey everyone! In our last episode, we dove into Generative AI and Language Learning Models. Lois: Yeah, that was an interesting one. But today, we’re going to discuss the AI and machine learning services offered by Oracle Cloud Infrastructure, and we’ll look at the OCI AI infrastructure. Nikita: I’m also going to try and squeeze in a couple of questions on a topic I’m really keen about, which is responsible AI. To take us through all of this, we have two of our colleagues, Hemant Gahankari and Himanshu Raj. Hemant is a Senior Principal OCI Instructor and Himanshu is a Senior Instructor on AI/ML. So, let’s get started! 01:36 Lois: Hi Hemant! We’re so excited to have you here! We know that Oracle has really been focusing on bringing AI to the enterprise at every layer of our stack. Hemant: It all begins with data and infrastructure layers. OCI AI services consume data, and AI services, in turn, are consumed by applications. This approach involves extensive investment from infrastructure to SaaS applications. Generative AI and massive scale models are the more recent steps. Oracle AI is the portfolio of cloud services for helping organizations use the data they may have for the business-specific uses. Business applications consume AI and ML services. The foundation of AI services and ML services is data. AI services contain pre-built models for specific uses. Some of the AI services are pre-trained, and some can be additionally trained by the customer with their own data. AI services can be consumed by calling the API for the service, passing in the data to be processed, and the service returns a result. There is no infrastructure to be managed for using AI services. 02:58 Nikita: How do I access OCI AI services? Hemant: OCI AI services provide multiple methods for access. The most common method is the OCI Console. The OCI Console provides an easy to use, browser-based interface that enables access to notebook sessions and all the features of all the data science, as well as AI services. The REST API provides access to service functionality but requires programming expertise. And API reference is provided in the product documentation. OCI also provides programming language SDKs for Java, Python, TypeScript, JavaScript, .Net, Go, and Ruby. The command line interface provides both quick access and full functionality without the need for scripting. 03:52 Lois: Hemant, what are the types of OCI AI services that are available? Hemant: OCI AI services is a collection of services with pre-built machine learning models that make it easier for developers to build a variety of business applications. The models can also be custom trained for more accurate business results. The different services provided are digital assistant, language, vision, speech, document understanding, anomaly detection. 04:24 Lois: I know we’re going to talk about them in more detail in the next episode, but can you introduce us to OCI Language, Vision, and Speech? Hemant: OCI Language allows you to perform sophisticated text analysis at scale. Using the pre-trained and custom models, you can process unstructured text to extract insights without data science expertise. Pre-trained models include language detection, sentiment analysis, key phrase ...
    Más Menos
    17 m