Episodes

  • #69: La fatiga en la esclerosis múltiple
    May 26 2024
    En el episodio de hoy, os traigo un tema muy presente en neurorrehabilitación y en las consultas de neurología en relación con la esclerosis múltiple y es nada menos que la fatiga. La fatiga, ese síntoma tan temido desde siempre, tanto por pacientes como por profesionales de la salud, que es uno de los más reportados, con cifras de prevalencia entre 52 y el 90% de los pacientes (Nagaraj et al., 2013). Indagamos en la fisiopatología de la fatiga para entender mejor este fenómeno, también diferentes formas de ver la fatiga con sus distintas nomenclaturas o términos, vamos a ver cómo se suele evaluar en el entorno clínico y en investigación y finalmente daremos algunas pinceladas de tratamiento neuromodulador. Referencias del episodio: 1. Adibi, I., Sanayei, M., Tabibian, F., Ramezani, N., Pourmohammadi, A., & Azimzadeh, K. (2022). Multiple sclerosis-related fatigue lacks a unified definition: A narrative review. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences, 27, 24. https://doi.org/10.4103/jrms.jrms_1401_20 (https://pubmed.ncbi.nlm.nih.gov/35419061/). 2. Ayache, S. S., & Chalah, M. A. (2017). Fatigue in multiple sclerosis - Insights into evaluation and management. Neurophysiologie clinique = Clinical neurophysiology, 47(2), 139–171. https://doi.org/10.1016/j.neucli.2017.02.004 (https://pubmed.ncbi.nlm.nih.gov/28416274/). 3. Ayache, S. S., Serratrice, N., Abi Lahoud, G. N., & Chalah, M. A. (2022). Fatigue in Multiple Sclerosis: A Review of the Exploratory and Therapeutic Potential of Non-Invasive Brain Stimulation. Frontiers in neurology, 13, 813965. https://doi.org/10.3389/fneur.2022.813965 (https://pubmed.ncbi.nlm.nih.gov/35572947/). 4. Bhattarai, J. J., Patel, K. S., Dunn, K. M., Brown, A., Opelt, B., & Hughes, A. J. (2023). Sleep disturbance and fatigue in multiple sclerosis: A systematic review and meta-analysis. Multiple sclerosis journal - experimental, translational and clinical, 9(3), 20552173231194352. https://doi.org/10.1177/20552173231194352 (https://pubmed.ncbi.nlm.nih.gov/37641617/). 5. Braley, T. J., & Chervin, R. D. (2010). Fatigue in multiple sclerosis: mechanisms, evaluation, and treatment. Sleep, 33(8), 1061–1067. https://doi.org/10.1093/sleep/33.8.1061 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910465/). 6. Capone, F., Motolese, F., Falato, E., Rossi, M., & Di Lazzaro, V. (2020). The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue. Frontiers in neurology, 11, 251. https://doi.org/10.3389/fneur.2020.00251 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212459/). 7. Chalah, M. A., Riachi, N., Ahdab, R., Créange, A., Lefaucheur, J. P., & Ayache, S. S. (2015). Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation. Frontiers in cellular neuroscience, 9, 460. https://doi.org/10.3389/fncel.2015.00460 (https://pubmed.ncbi.nlm.nih.gov/26648845/). 8. Chalah, M. A., Kauv, P., Créange, A., Hodel, J., Lefaucheur, J. P., & Ayache, S. S. (2019). Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Multiple sclerosis and related disorders, 28, 145–152. https://doi.org/10.1016/j.msard.2018.12.029 (https://pubmed.ncbi.nlm.nih.gov/30594815/). 9. Dittner, A. J., Wessely, S. C., & Brown, R. G. (2004). The assessment of fatigue: a practical guide for clinicians and researchers. Journal of psychosomatic research, 56(2), 157–170. https://doi.org/10.1016/S0022-3999(03)00371-4 (https://pubmed.ncbi.nlm.nih.gov/15016573/). 10. Dobryakova, E., Genova, H. M., DeLuca, J., & Wylie, G. R. (2015). The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Frontiers in neurology, 6, 52. https://doi.org/10.3389/fneur.2015.00052 (https://pubmed.ncbi.nlm.nih.gov/25814977/). 11. Freal, J. E., Kraft, G. H., & Coryell, J. K. (1984). Symptomatic fatigue in multiple sclerosis. Archives of physical medicine and rehabilitation, 65(3), 135–138 (https://pubmed.ncbi.nlm.nih.gov/6703889/). 12. Gaede, G., Tiede, M., Lorenz, I., Brandt, A. U., Pfueller, C., Dörr, J., Bellmann-Strobl, J., Piper, S. K., Roth, Y., Zangen, A., Schippling, S., & Paul, F. (2017). Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurology(R) neuroimmunology & neuroinflammation, 5(1), e423. https://doi.org/10.1212/NXI.0000000000000423 (https://pubmed.ncbi.nlm.nih.gov/29259998/). 13. Garis, G., Haupts, M., Duning, T., & Hildebrandt, H. (2023). Heart rate variability and fatigue in MS: two parallel pathways representing disseminated inflammatory processes?. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 44(1), 83–98. https://doi.org/10.1007/s10072-022-06385-1 (https://pubmed.ncbi.nlm.nih.gov/36125573/). 14. Hanken, K., Eling, P., & Hildebrandt, H. (2014). The ...
    Show more Show less
    1 hr and 12 mins
  • #68: Cerebelo y ataxia. Neurofisiología y terapéutica
    Mar 29 2024
    En este episodio, realizo una síntesis de conocimiento y experiencia sobre el cerebelo y la ataxia, desde la anatomía y fisiología, describiendo la ataxia, hasta la evaluación y el tratamiento neurorrehabilitador. El objetivo es hilar el conocimiento anatómico y neurofisiológico con el aprendizaje motor y la plasticidad del cerebelo y tratar de establecer un marco de evaluación y tratamiento de los pacientes atáxicos. Referencias bibliográficas: 1. Stephan, M. A., et al (2011). Effect of long-term climbing training on cerebellar ataxia: a case series. Rehabilitation research and practice, 2011, 525879. (https://pubmed.ncbi.nlm.nih.gov/22191034/). 2. Aprigliano, F., et al (2019). Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia. Journal of neuroengineering and rehabilitation, 16(1), 50. (https://pubmed.ncbi.nlm.nih.gov/30975168/9. 3. Benussi, A.,et al (2017). Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain stimulation, 10(2), 242–250. (https://pubmed.ncbi.nlm.nih.gov/27838276/). 4. Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: nodes in an integrated network. Nature reviews. Neuroscience, 19(6), 338–350. (https://pubmed.ncbi.nlm.nih.gov/29643480/). 5. Cabaraux, P., et al (2023). Consensus Paper: Ataxic Gait. Cerebellum (London, England), 22(3), 394–430. (https://pubmed.ncbi.nlm.nih.gov/35414041/). 6. D'Angelo E. (2014). The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in brain research, 210, 31–58. (https://pubmed.ncbi.nlm.nih.gov/24916288/). 7. D'Angelo E. (2018). Physiology of the cerebellum. Handbook of clinical neurology, 154, 85–108. (https://pubmed.ncbi.nlm.nih.gov/29903454/). 8. França, C., et al (2018). Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain stimulation, 11(2), 249–260. (https://pubmed.ncbi.nlm.nih.gov/29191439/). 9. Gong, C., et al (2023). Efficacy and safety of noninvasive brain stimulation for patients with cerebellar ataxia: a systematic review and meta-analysis of randomized controlled trials. Journal of neurology, 270(10), 4782–4799. (https://pubmed.ncbi.nlm.nih.gov/37460852/). 10. Gorgas, A. M., et al (2015). Gait changes with balance-based torso-weighting in people with multiple sclerosis. (https://pubmed.ncbi.nlm.nih.gov/24930996/). 11. Ilg, W., et al (2023). Quantitative Gait and Balance Outcomes for Ataxia Trials. Cerebellum 10.1007/s12311-023-01625-2. Advance online publication. (https://pubmed.ncbi.nlm.nih.gov/37955812/). 12. Ilg, W., et al (2009). Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology, 73(22), 1823–1830. (https://pubmed.ncbi.nlm.nih.gov/19864636/). 13. Jacobson, G. A. et al (2008). A model of the olivo-cerebellar system as a temporal pattern generator. Trends in neurosciences, 31(12), 617–625. (https://pubmed.ncbi.nlm.nih.gov/18952303/). 14. Kelly, G., & Shanley, J. (2016). Rehabilitation of ataxic gait following cerebellar lesions: Applying theory to practice. Physiotherapy theory and practice, 32(6), 430–437. (https://pubmed.ncbi.nlm.nih.gov/27458875/). 15. Marsden J. F. (2018). Cerebellar ataxia. Handbook of clinical neurology, 159, 261–281. (https://pubmed.ncbi.nlm.nih.gov/30482319/). 16. Morton, S. M., & Bastian, A. J. (2003). Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. Journal of neurophysiology, 89(4), 1844–1856. (https://pubmed.ncbi.nlm.nih.gov/12612041/). 17. Ruggieri, S., et al (2021). A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. Journal of neurology, 268(12), 4698–4706. (https://pubmed.ncbi.nlm.nih.gov/33942160/). 18. Serrao, M., et al (2017). Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients. European journal of physical and rehabilitation medicine, 53(5), 735–743. (https://pubmed.ncbi.nlm.nih.gov/28627859/). 19. Shah, V. V., et al (2021). Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors. Movement disorders : official journal of the Movement Disorder Society, 36(12), 2922–2931. (https://pubmed.ncbi.nlm.nih.gov/34424581/). 20. Wang, Y., et al (2023). Effects of transcranial magnetic stimulation on cerebellar ataxia: A systematic review and meta-analysis. Frontiers in neurology, 14, 1049813. (https://pubmed.ncbi.nlm.nih.gov/36779066/). 21. Wright, R. L., et al (2016). Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke. Frontiers in neurology, 7, 84. (https://pubmed.ncbi.nlm.nih.gov/27313563/).
    Show more Show less
    1 hr and 56 mins
  • #67: El núcleo rojo...¿deja de ser motor?
    Jan 20 2024
    En este episodio, actualizamos la neuroanatomía funcional del núcleo rojo a raíz del último trabajo pre-print de Krimmel (2024): The brainstem’s red nucleus was evolutionarily upgraded to support goal-directed action. Aprovechamos para traer de vuelta la crítica al tracto rubroespinal que hicimos en el #1 de Hemispherics y argumentamos el sentido evolutivo y funcional del núcleo rojo y sus conexiones en el ser humano adulto. ¿Es el núcleo rojo motor? ¿O tiene más función como nodo en una red más amplia de control ejecutivo de la acción? ¡Lo vemos en este episodio! Referencias del episodio: 1. Habas, C., & Cabanis, E. A. (2006). Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology, 48(10), 755–762. https://doi.org/10.1007/s00234-006-0117-9 (https://pubmed.ncbi.nlm.nih.gov/16937147/). 2. Basile, G. A., Quartu, M., Bertino, S., Serra, M. P., Boi, M., Bramanti, A., Anastasi, G. P., Milardi, D., & Cacciola, A. (2021). Red nucleus structure and function: from anatomy to clinical neurosciences. Brain structure & function, 226(1), 69–91. https://doi.org/10.1007/s00429-020-02171-x (https://pubmed.ncbi.nlm.nih.gov/33180142/). 3. Sung, Y. W., Kiyama, S., Choi, U. S., & Ogawa, S. (2022). Involvement of the intrinsic functional network of the red nucleus in complex behavioral processing. Cerebral cortex communications, 3(3), tgac037. https://doi.org/10.1093/texcom/tgac037 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491841/). 4. Krimmel, S.R., et al. (2024). The brainstem’s red nucleus was evolutionarily upgraded to support goal-directed action. bioRxiv. Preprint. https://doi.org/10.1101/2023.12.30.573730 (https://www.biorxiv.org/content/10.1101/2023.12.30.573730v1). 5. Gordon, E. M., Chauvin, R. J., Van, A. N., Rajesh, A., Nielsen, A., Newbold, D. J., Lynch, C. J., Seider, N. A., Krimmel, S. R., Scheidter, K. M., Monk, J., Miller, R. L., Metoki, A., Montez, D. F., Zheng, A., Elbau, I., Madison, T., Nishino, T., Myers, M. J., Kaplan, S., … Dosenbach, N. U. F. (2023). A somato-cognitive action network alternates with effector regions in motor cortex. Nature, 617(7960), 351–359. https://doi.org/10.1038/s41586-023-05964-2 (https://pubmed.ncbi.nlm.nih.gov/37076628/).
    Show more Show less
    41 mins
  • #66: Krakauer y el problema de la reorganización cortical
    Dec 27 2023
    En este episodio, resumo un artículo reciente (2023) de John Krakauer y Tamar Makin sobre la reorganización cortical. Es un artículo crítica a este concepto tan famoso y vanagloriado en neurociencia y se aportan datos que apoyan esta crítica mencionando estudios clásicos en animales y humanos. Estudios sobre ceguera congénita, experimentos en gatos y hurones, amputados y reorganización tras un ictus. Krakauer propone su definición y criterios de reorganización cortical y en base a eso refuta los estudios que afirman la reorganización. Referencias del episodio: 1. Makin, T. R., & Krakauer, J. W. (2023). Against cortical reorganisation. eLife, 12, e84716. https://doi.org/10.7554/eLife.84716 (https://pubmed.ncbi.nlm.nih.gov/37986628/). 2. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science (New York, N.Y.), 279(5357), 1714–1718. https://doi.org/10.1126/science.279.5357.1714 (https://pubmed.ncbi.nlm.nih.gov/9497289/). 3. Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain : a journal of neurology, 116 ( Pt 1), 39–52. https://doi.org/10.1093/brain/116.1.39 (https://pubmed.ncbi.nlm.nih.gov/8453464/). 4. Nudo R. J. (2007). Postinfarct cortical plasticity and behavioral recovery. Stroke, 38(2 Suppl), 840–845. https://doi.org/10.1161/01.STR.0000247943.12887.d2 (https://pubmed.ncbi.nlm.nih.gov/17261749/). 5. Ramachandran, V. S., Stewart, M., & Rogers-Ramachandran, D. C. (1992). Perceptual correlates of massive cortical reorganization. Neuroreport, 3(7), 583–586. https://doi.org/10.1097/00001756-199207000-00009 (https://pubmed.ncbi.nlm.nih.gov/1421112/). 6. Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of neurophysiology, 26, 1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003 (https://pubmed.ncbi.nlm.nih.gov/14084161/).
    Show more Show less
    1 hr and 22 mins
  • #65: Santiago Ramón y Cajal. Neuronas de la voluntad
    Dec 9 2023
    Este es un episodio muy especial, en el que resumo la biografía de Cajal y sus principales descubrimientos en neurociencia, además de hablar de su contexto y principales discípulos. Es un episodio homenaje a una figura muy poco reconocida en España para la relevancia que tiene en la neurociencia moderna. Cajal ganó el Premio Nobel en Fisiología y Medicina en 1906, compartido con Camillo Golgi, en reconocimiento a su “teoría neuronal” y a su investigación sobre histología del sistema nervioso del humano y los vertebrados. Obtuvo innumerables galardones, como la Medalla Helmholtz en 1905, Premio Nacional de Moscú en 1900 y Doctor Honoris Causa en muchas universidades. Referencias del episodio: 1. Cánovas Sánchez F. (2021). Cajal. Alianza Editorial. 2. Swanson W. Larry & Newman Eric (2017). The Beautiful Brain: The Drawings of Santiago Ramon y Cajal. Abrams. 3.de Castro F. (2019). Cajal and the Spanish Neurological School: Neuroscience Would Have Been a Different Story Without Them. Frontiers in cellular neuroscience, 13, 187. https://doi.org/10.3389/fncel.2019.00187 (https://pubmed.ncbi.nlm.nih.gov/31178695/). 4. Alonso Peña Jose Ramón & De Carlos Segovia Juan Andrés (2018). Cajal: un grito por la ciencia. Next Door Publishers S.L.
    Show more Show less
    1 hr and 5 mins
  • #64: Vibración focal en neurorrehabilitación adulta (+entrevista Serafín Ortigueira)
    Oct 21 2023
    En este episodio, hablo sobre vibración focal en neurorrehabilitación del adulto, apoyándome posteriormente en la charla con el fisioterapeuta Serafín Ortigueira, quien tiene amplia experiencia con esta técnica. Describo brevemente la vibración focal, sus mecanismos de acción y algunas de las aplicaciones clínicas actuales, sobre todo en pacientes con ictus y lesión medular. La vibración focal es una técnica sencilla de aplicar, pero tiene mecanismos que deben ser comprendidos para aplicarla con toda su riqueza y posibilidades que brinda, ya sea para el tratamiento de la espasticidad, mejora del control motor o o incluso aspectos coaduyaventes a nivel visceral o respiratorio. Referencias del episodio: 1. Shinohara M. (2005). Effects of prolonged vibration on motor unit activity and motor performance. Medicine and science in sports and exercise, 37(12), 2120–2125. https://doi.org/10.1249/01.mss.0000178106.68569.7e (https://pubmed.ncbi.nlm.nih.gov/16331139/). 2. Khalifeloo, M., Naghdi, S., Ansari, N. N., Akbari, M., Jalaie, S., Jannat, D., & Hasson, S. (2018). A study on the immediate effects of plantar vibration on balance dysfunction in patients with stroke. Journal of exercise rehabilitation, 14(2), 259–266. https://doi.org/10.12965/jer.1836044.022 (https://pubmed.ncbi.nlm.nih.gov/29740561/). 3. Karimi-AhmadAbadi, A., Naghdi, S., Ansari, N. N., Fakhari, Z., & Khalifeloo, M. (2018). A clinical single blind study to investigate the immediate effects of plantar vibration on balance in patients after stroke. Journal of bodywork and movement therapies, 22(2), 242–246. https://doi.org/10.1016/j.jbmt.2017.04.013 (https://pubmed.ncbi.nlm.nih.gov/29861214/). 4. Celletti, C., Suppa, A., Bianchini, E., Lakin, S., Toscano, M., La Torre, G., Di Piero, V., & Camerota, F. (2020). Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 41(1), 11–24. https://doi.org/10.1007/s10072-019-04047-3 (https://pubmed.ncbi.nlm.nih.gov/31468237/). 5. Paoloni, M., Mangone, M., Scettri, P., Procaccianti, R., Cometa, A., & Santilli, V. (2010). Segmental muscle vibration improves walking in chronic stroke patients with foot drop: a randomized controlled trial. Neurorehabilitation and neural repair, 24(3), 254–262. https://doi.org/10.1177/1545968309349940 (https://pubmed.ncbi.nlm.nih.gov/19855076/). 6. Moggio, L., de Sire, A., Marotta, N., Demeco, A., & Ammendolia, A. (2022). Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disability and rehabilitation, 44(20), 5741–5749. https://doi.org/10.1080/09638288.2021.1946175 (https://pubmed.ncbi.nlm.nih.gov/34225557/). 7. Rosenkranz, K., & Rothwell, J. C. (2003). Differential effect of muscle vibration on intracortical inhibitory circuits in humans. The Journal of physiology, 551(Pt 2), 649–660. https://doi.org/10.1113/jphysiol.2003.043752 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343209/). 8. Binder, C., Kaya, A. E., & Liepert, J. (2009). Vibration prolongs the cortical silent period in an antagonistic muscle. Muscle & nerve, 39(6), 776–780. https://doi.org/10.1002/mus.21240 (https://pubmed.ncbi.nlm.nih.gov/19334048/). 9. Bertasi, V., Bertolasi, L., Frasson, E., & Priori, A. (2000). The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation. Experimental brain research, 132(3), 384–389. https://doi.org/10.1007/s002210000352 (https://pubmed.ncbi.nlm.nih.gov/10883387/). 10. Mortaza, N., Abou-Setta, A. M., Zarychanski, R., Loewen, H., Rabbani, R., & Glazebrook, C. M. (2019). Upper limb tendon/muscle vibration in persons with subacute and chronic stroke: a systematic review and meta-analysis. European journal of physical and rehabilitation medicine, 55(5), 558–569. https://doi.org/10.23736/S1973-9087.19.05605-3 (https://pubmed.ncbi.nlm.nih.gov/30868835/). 11. Avvantaggiato, C., Casale, R., Cinone, N., Facciorusso, S., Turitto, A., Stuppiello, L., Picelli, A., Ranieri, M., Intiso, D., Fiore, P., Ciritella, C., & Santamato, A. (2021). Localized muscle vibration in the treatment of motor impairment and spasticity in post-stroke patients: a systematic review. European journal of physical and rehabilitation medicine, 57(1), 44–60. https://doi.org/10.23736/S1973-9087.20.06390-X (https://pubmed.ncbi.nlm.nih.gov/33111513/). 12. Murillo, N., Valls-Sole, J., Vidal, J., Opisso, E., Medina, J., & Kumru, H. (2014). Focal vibration in neurorehabilitation. European journal of physical and rehabilitation medicine, 50(2), 231–242 (https://pubmed.ncbi.nlm.nih.gov/24842220/). 13. Li, W., Luo, F., Xu, Q., Liu, A., Mo, L., Li, C., & Ji, L. (2022). Brain oscillatory activity correlates with the relief of post-stroke spasticity following focal vibration. ...
    Show more Show less
    1 hr and 42 mins
  • #63: Sistema nervioso autónomo: corazón y cerebro
    Sep 20 2023
    En el episodio de hoy, tenemos delante un tema muy desconocido en neurorrehabilitación aunque muy relevante como es el sistema nervioso autónomo. Todos los profesionales de la salud y especialmente los que nos dedicamos a los pacientes neurológicos, tenemos una cierta base teórica sobre el sistema nervioso autónomo, si bien peca mucho de lo periférico, cuando existe una representación central (la red autónoma central) que ejerce control sobre el sistema autónomo y tiene implicaciones en patología neurológica, incluso en el tratamiento. Hablamos de variabilidad de frecuencia cardíaca como variable autónoma fundamental y de algunos modelos vagales cardíacos que explican la conexión cerebro-corazón. Referencias del episodio: 1. Sposato, L. A., Hilz, M. J., Aspberg, S., Murthy, S. B., Bahit, M. C., Hsieh, C. Y., Sheppard, M. N., Scheitz, J. F., & World Stroke Organisation Brain & Heart Task Force (2020). Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(23), 2768–2785. https://doi.org/10.1016/j.jacc.2020.10.009 (https://pubmed.ncbi.nlm.nih.gov/33272372/). 2. Porges S. W. (2009). The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic journal of medicine, 76 Suppl 2(Suppl 2), S86–S90. https://doi.org/10.3949/ccjm.76.s2.17 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108032/). 3. Sletten, D. M., Suarez, G. A., Low, P. A., Mandrekar, J., & Singer, W. (2012). COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clinic proceedings, 87(12), 1196–1201. https://doi.org/10.1016/j.mayocp.2012.10.013 (https://pubmed.ncbi.nlm.nih.gov/23218087/). 4. Nikolin, S., Boonstra, T. W., Loo, C. K., & Martin, D. (2017). Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PloS one, 12(8), e0181833. https://doi.org/10.1371/journal.pone.0181833 (https://pubmed.ncbi.nlm.nih.gov/28771509/). 5. Vistisen, S. T., Jensen, J., Fleischer, J., & Nielsen, J. F. (2015). Association between the sensory-motor nervous system and the autonomic nervous system in neurorehabilitation patients with severe acquired brain injury. Brain injury, 29(3), 374–379. https://doi.org/10.3109/02699052.2014.969312 (https://pubmed.ncbi.nlm.nih.gov/25356639/). 6. Vistisen, S. T., Hansen, T. K., Jensen, J., Nielsen, J. F., & Fleischer, J. (2014). Heart rate variability in neurorehabilitation patients with severe acquired brain injury. Brain injury, 28(2), 196–202. https://doi.org/10.3109/02699052.2013.860477 (https://pubmed.ncbi.nlm.nih.gov/24295072/). 7. Scheitz, J. F., Sposato, L. A., Schulz-Menger, J., Nolte, C. H., Backs, J., & Endres, M. (2022). Stroke-Heart Syndrome: Recent Advances and Challenges. Journal of the American Heart Association, 11(17), e026528. https://doi.org/10.1161/JAHA.122.026528 (https://pubmed.ncbi.nlm.nih.gov/36056731/). 8. Lee, Y., Walsh, R. J., Fong, M. W. M., Sykora, M., Doering, M. M., & Wong, A. W. K. (2021). Heart rate variability as a biomarker of functional outcomes in persons with acquired brain injury: Systematic review and meta-analysis. Neuroscience and biobehavioral reviews, 131, 737–754. https://doi.org/10.1016/j.neubiorev.2021.10.004 (https://pubmed.ncbi.nlm.nih.gov/34626686/). 9. Arakaki, X., Arechavala, R. J., Choy, E. H., Bautista, J., Bliss, B., Molloy, C., Wu, D. A., Shimojo, S., Jiang, Y., Kleinman, M. T., & Kloner, R. A. (2023). The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Frontiers in neuroscience, 17, 1055445. https://doi.org/10.3389/fnins.2023.1055445 (https://pubmed.ncbi.nlm.nih.gov/36937689/). 10. Agorastos, A., Mansueto, A. C., Hager, T., Pappi, E., Gardikioti, A., & Stiedl, O. (2023). Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines, 11(6), 1591. https://doi.org/10.3390/biomedicines11061591 (https://pubmed.ncbi.nlm.nih.gov/37371686/). 11. Buitrago-Ricaurte, N., Cintra, F., & Silva, G. S. (2020). Heart rate variability as an autonomic biomarker in ischemic stroke. Arquivos de neuro-psiquiatria, 78(11), 724–732. https://doi.org/10.1590/0004-282X20200087 (https://pubmed.ncbi.nlm.nih.gov/33331466/). 12. Dawson, J., Liu, C. Y., Francisco, G. E., Cramer, S. C., Wolf, S. L., Dixit, A., Alexander, J., Ali, R., Brown, B. L., Feng, W., DeMark, L., Hochberg, L. R., Kautz, S. A., Majid, A., O'Dell, M. W., Pierce, D., Prudente, C. N., Redgrave, J., Turner, D. L., Engineer, N. D., … Kimberley, T. J. (2021). Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet (London, England), 397(10284), 1545–1553. https://doi.org/10.1016/S0140-6736(21)00475-X (https://pubmed.ncbi.nlm.nih.gov...
    Show more Show less
    1 hr and 23 mins
  • #62: Los savants: lo que el cerebro es capaz de hacer
    Aug 12 2023
    En el episodio de hoy, hablo de un tema que se escapa un poco de la temática habitual del podcast. Este episodio es una “curiosidad de la neurociencia”; una indagación en un tema que desde hace muchos años me ha llamado la atención. Se trata de los savants. Los savants son personas que bien porque han nacido con problemas en el desarrollo o por una lesión cerebral adquirida, son capaces de tener habilidades extraordinarias. Parece ser que la mitad de los savant son autistas, uno de cada diez autistas es savant y uno de cada mil individuos que tienen dañado el cerebro o padecen retraso mental. Son personas que, sin necesidad de entrenamiento, aprendizaje o interés previo, tienen unas habilidades increíbles, sobre todo en el campo de la música, el cálculo o el dibujo. Referencias del episodio: 1. Treffert D. A. (2014). Savant syndrome: realities, myths and misconceptions. Journal of autism and developmental disorders, 44(3), 564–571. (https://pubmed.ncbi.nlm.nih.gov/23918440/). 2. Treffert DA. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos Trans R Soc Lond B Biol Sci. 2009 May 27;364(1522):1351-7 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677584/). 3. Barr MW. Some notes on echolalia, with the report of an extraordinary case. J Nerv Ment Dis 1898;25:20-30 (https://zenodo.org/record/1734113). 4. Mishkin M, Malamut B, Bachevalier J. Memories and habits: two neural systems. In: Lynch G, McGaugh JL, Weinberger NM, editors. Neurobiology of learning and memory. New York: Guilford Press;1984. p.65-77. 5. Kapur N. (1996). Paradoxical functional facilitation in brain-behaviour research. A critical review. Brain : a journal of neurology, 119 ( Pt 5), 1775–1790.https://doi.org/10.1093/brain/119.5.1775 (https://pubmed.ncbi.nlm.nih.gov/9236635/). 6. Boso, M., Emanuele, E., Prestori, F., Politi, P., Barale, F., & D'Angelo, E. (2010). Autism and genius: is there a link? The involvement of central brain loops and hypotheses for functional testing. Functional neurology, 25(1), 15–20 (https://pubmed.ncbi.nlm.nih.gov/20630121/). 7. Snyder, A. W., Mulcahy, E., Taylor, J. L., Mitchell, D. J., Sachdev, P., & Gandevia, S. C. (2003). Savant-like skills exposed in normal people by suppressing the left fronto-temporal lobe. Journal of integrative neuroscience, 2(2), 149–158. https://doi.org/10.1142/s0219635203000287 (https://pubmed.ncbi.nlm.nih.gov/15011267/). 8. Snyder, A. W., & Thomas, M. (1997). Autistic artists give clues to cognition. Perception, 26(1), 93–96. https://doi.org/10.1068/p260093 (https://pubmed.ncbi.nlm.nih.gov/9196693/). 9. Humphrey, N. (1998). Cave Art, Autism, and the Evolution of the Human Mind. Cambridge Archaeological Journal, 8(2), 165-191. doi:10.1017/S0959774300001827 (https://www.cambridge.org/core/journals/cambridge-archaeological-journal/article/abs/cave-art-autism-and-the-evolution-of-the-human-mind/7E969D1ACAB536BD809348B9B4FE5C4D#). 10. Spikins, P., Scott, C. & Wright, B. (2018). How Do We Explain ‛Autistic Traits’ in European Upper Palaeolithic Art?. Open Archaeology, 4(1), 262-279. https://doi.org/10.1515/opar-2018-0016 (https://www.degruyter.com/document/doi/10.1515/opar-2018-0016/html#APA). 11. Folgerø, P. O., Johansson, C., & Stokkedal, L. H. (2021). The Superior Visual Perception Hypothesis: Neuroaesthetics of Cave Art. Behavioral sciences (Basel, Switzerland), 11(6), 81. https://doi.org/10.3390/bs11060081 (https://pubmed.ncbi.nlm.nih.gov/34073168/). 12. Lai G, Pantazatos SP, Schneider H, Hirsch J. Neural systems for speech and song in autism. Brain. 2012 Mar;135(Pt 3):961-75. doi: 10.1093/brain/awr335. Epub 2012 Feb 1. PMID: 22298195; PMCID: PMC3286324 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286324/). 13. Beate H. A memoir of the savant syndrome. Bright splinters of the mind: a personal story of research with autistics savant. London: Jessica Kingsley Publishers; 2001. p. 160 (https://www.proquest.com/docview/198983834). 14. Muñoz-Yunta JA , Ortiz T, Amo C, Fernández-Lucas A, Maestú F, Palau-Baduell M. El síndrome de savant o idiot savant. Rev Neurol 2003;36 (S1):157-0 (https://neurologia.com/articulo/2003061). 15. Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of neurology, 42(5), 428–459. https://doi.org/10.1001/archneur.1985.04060050026008 (https://pubmed.ncbi.nlm.nih.gov/3994562/). 16. Navarro-Pardo E, Alonso-Esteban Y, Alcantud-Marin F, Murphy M. Do Savant Syndrome and Autism Spectrum Disorders Share Sex Differences? A Comprehensive Review. Soa Chongsonyon Chongsin Uihak. 2023 Apr 1;34(2):117-124. doi: 10.5765/jkacap.230008. PMID: 37035793; PMCID: PMC10080262 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080262/). 17. Pring, L., Ryder, N., Crane, L., & Hermelin, B. (2010). Local and global processing in savant artists with autism. Perception, 39(8), 1094–1103. https://...
    Show more Show less
    1 hr and 4 mins