Oracle University Podcast  By  cover art

Oracle University Podcast

By: Oracle Corporation
  • Summary

  • Oracle University Podcast delivers convenient, foundational training on popular Oracle technologies such as Oracle Cloud Infrastructure, Java, Autonomous Database, and more to help you jump-start or advance your career in the cloud.
    2023 Oracle Corporation
    Show more Show less
activate_primeday_promo_in_buybox_DT
Episodes
  • Database Essentials
    Jul 23 2024
    Join hosts Lois Houston and Nikita Abraham, along with Hope Fisher, Oracle’s Product Manager for Database Technologies, as they break down the basics of databases, explore different database management systems, and delve into database development. Whether you're a newcomer or just need a refresher, this quick, informative episode is sure to offer you some valuable insights. Oracle MyLearn: https://mylearn.oracle.com/ou/course/database-essentials/133032/Oracle University Learning Community: https://education.oracle.com/ou-communityLinkedIn: https://www.linkedin.com/showcase/oracle-university/X: https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Hello and welcome to the Oracle University Podcast. I’m Nikita Abraham, Principal Technical Editor with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! For the last seven weeks, we’ve been exploring the world of OCI Container Engine for Kubernetes with our senior instructor Mahendra Mehra. We covered key aspects of OKE to help you create, manage, and optimize Kubernetes clusters in Oracle Cloud Infrastructure. So, be sure you check out those episodes if you’re interested in Kubernetes. 01:00 Nikita: Today, we’re doing something a little different. We’ve had a lot of episodes on different aspects of Oracle Database, but what if you’re just getting started in this world? We wanted you to have something that you could listen to as well. And so we have Hope Fisher with us today. Hope is a Product Manager for Database Technologies at Oracle, and we’re going to ask her to take us through the basics of database, the different database management systems, and database development. Lois: Hi Hope! Thanks for joining us for this episode. Before we dive straight into terminologies and concepts, I want to take a step back and really get down to the basics. We sometimes use the terms data and information interchangeably, but they’re not the same, right? 01:43 Hope: Data is raw material or a set of facts and observations. Information is the meaning derived from the facts. The difference between data and information can be explained by using an example, such as test scores. In one class, if every student receives a numbered score and the scores can be calculated to determine a class average, the class average can be calculated to determine the school average. So in this scenario, each student's test score is one piece of data. And information is the class’s average score or the school's average score. There is no value in data until you actually do something with it. 02:24 Nikita: Right, so then how do we make all this data useful? Do we create a database system? Hope: A database system provides a simple function—treat data as a collection of information, organize it, and make the data usable by providing easy access to it and giving you a place where that data can be stored. Every organization needs to collect and maintain data to meet its requirements. Most organizations today use a database to automate their information systems. An information system can be defined as a formal system for storing and processing data. A database is an organized collection of data put together as a unit. The rationale of a database is to collect, store, and retrieve related data for use by database applications. A database application is a software program that interacts with the database to access and manipulate data. A database is usually managed by a Database Administrator, also known as a DBA. 03:25 Nikita: Hope, give us some examples of database systems. Hope: Popular examples of database systems include Oracle Database, MySQL, which is also owned by Oracle, Microsoft SQL server, Postgres, and others. There are relational database management systems. The acronym is DBMS. Some of the strengths of a DBMS include flexibility and scalability. Given the huge amounts of information that modern businesses need to handle, these are important factors to consider when surveying different types of databases. 03:59 Lois: This may seem a little bit silly, but why not just use spreadsheets, Hope? Why use databases? Hope: The easy answer is that spreadsheets are designed for specific problems, relatively small amounts of data and individual users. Databases are designed for lots of data, shared information use, and complex data analysis. Spreadsheets are typically used for specific problems or small amounts of data. Individual users generally use spreadsheets. In a database, cells contain ...
    Show more Show less
    12 mins
  • Container Engine for Kubernetes: Security Practices
    Jul 16 2024
    In the season's final episode, hosts Lois Houston and Nikita Abraham interview senior OCI instructor Mahendra Mehra about the security practices that are vital for OKE clusters on OCI. Mahendra shares his expert insights on the importance of Kubernetes security, especially in today's digital landscape where the integrity of data and applications is paramount. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. --------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Welcome to the Oracle University Podcast! I’m Nikita Abraham, Principal Technical Editor with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi there! In our last episode, we spoke about self-managed nodes and how you can manage Kubernetes deployments. Nikita: Today is the final episode of this series on OCI Container Engine for Kubernetes. We’re going to look at the security side of things and discuss how you can implement vital security practices for your OKE clusters on OCI, and safeguard your infrastructure and data. 00:59 Lois: That’s right, Niki! We can’t overstate the importance of Kubernetes security, especially in today's digital landscape, where the integrity of your data and applications is paramount. With us today is senior OCI instructor, Mahendra Mehra, who will take us through Kubernetes security and compliance practices. Hi Mahendra! It’s great to have you here. I want to jump right in and ask you, how can users add a service account authentication token to a kubeconfig file? Mahendra: When you set up the kubeconfig file for a cluster, by default, it contains an Oracle Cloud Infrastructure CLI command to generate a short-lived, cluster-scoped, user-specific authentication token. The authentication token generated by the CLI command is appropriate to authenticate individual users accessing the cluster using kubectl and the Kubernetes Dashboard. However, the generated authentication token is not appropriate to authenticate processes and tools accessing the cluster, such as continuous integration and continuous delivery tools. To ensure access to the cluster, such tools require long-lived non-user-specific authentication tokens. One solution is to use a Kubernetes service account. Having created a service account, you bind it to a cluster role binding that has cluster administration permissions. You can create an authentication token for this service account, which is stored as a Kubernetes secret. You can then add the service account as a user definition in the kubeconfig file itself. Other tools can then use this service account authentication token when accessing the cluster. 02:47 Nikita: So, as I understand it, adding a service account authentication token to a kubeconfig file enhances security and enables automated tools to interact seamlessly with your Kubernetes cluster. So, let’s talk about the permissions users need to access clusters they have created using Container Engine for Kubernetes. Mahendra: For most operations on Container Engine for Kubernetes clusters, IAM leverages the concept of groups. A user's permissions are determined by the IAM groups they belong to, including dynamic groups. The access rights for these groups are defined by policies. IAM provides granular control over various cluster operations, such as the ability to create or delete clusters, add, remove, or modify node pool, and dictate the Kubernetes object create, delete, view operations a user can perform. All these controls are specified at the group and policy levels. In addition to IAM, the Kubernetes role-based access control authorizer can enforce additional fine-grained access control for users on specific clusters via Kubernetes RBAC roles and ClusterRoles. 04:03 Nikita: What are Kubernetes RBAC roles and ClusterRoles, Mahendra? Mahendra: Roles here defines permissions for resources within a specific namespace and ClusterRole is a global object that will provide access to global objects as well as non-resource URLs, such as API version and health endpoints on the API server. Kubernetes RBAC also includes RoleBindings and ClusterRoleBindings. RoleBinding grants permission to subjects, which can be a user, service, or group interacting with the Kubernetes API. It specified an allowed ...
    Show more Show less
    19 mins
  • Working with Self-Managed Nodes and Managing Kubernetes Deployments
    Jul 9 2024
    In this episode, hosts Lois Houston and Nikita Abraham speak with senior OCI instructor Mahendra Mehra about the capabilities of self-managed nodes in Kubernetes, including how they offer complete control over worker nodes in your OCI Container Engine for Kubernetes environment. They also explore the various options that are available to effectively manage your Kubernetes deployments. OCI Container Engine for Kubernetes Specialist: https://mylearn.oracle.com/ou/course/oci-container-engine-for-kubernetes-specialist/134971/210836 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X (formerly Twitter): https://twitter.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started! 00:26 Nikita: Hello and welcome to the Oracle University Podcast! I’m Nikita Abraham, Principal Technical Editor with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hi everyone! Last week, we discussed how OKE virtual nodes can offer you a complete serverless Kubernetes experience. Nikita: Yeah, and in today’s episode, we’ll focus on self-managed nodes, where you get complete control over the worker nodes within your OKE environment. We’ll also talk about how you can manage your Kubernetes deployments. 00:57 Lois: To tell us more about this, we have Mahendra Mehra, a senior OCI instructor with Oracle University. Hi Mahendra! Welcome back! Let’s get started with self-managed nodes. Can you tell us what they are? Mahendra: In Container Engine for Kubernetes, a self-managed node is essentially a worker node that you personally create and host on a compute instance or instance pool within the compute service. Unlike managed nodes or virtual nodes, self-managed nodes are not grouped into node pools by default. They are often referred to as Bring Your Own Nodes, also abbreviated as BYON. If you wish to streamline administration and manage multiple self-managed nodes collectively, you can utilize the compute service to create a compute instance pool for hosting these nodes. This allows for greater flexibility and customization in your Kubernetes environment. 01:58 Nikita: Mahendra, what are some practical usage scenarios for OKE self-managed nodes? Mahendra: These nodes offer a range of advantages for specific use cases. Firstly, for specialized workloads, leveraging the compute service allows you to configure compute instances with shapes and image combination that may not be available for managed nodes or virtual nodes. This includes options like GPU shapes for hardware accelerated workloads or high frequency processor cores for demanding high-performance computing tasks. Secondly, if you require complete control over your compute instance configuration, self-managed nodes are the ideal choice. This gives you the flexibility to tailor each node to your specific requirements. Additionally, self-managed nodes are particularly well suited for Oracle Cloud Infrastructure cluster networks. These nodes provide high bandwidth, low latency RDMA connectivity, making them a preferred option for certain networking setups. Lastly, the use of compute instance pools with self-managed nodes enables the creation of infrastructure for handling complex distributed computing tasks. This can greatly enhance the efficiency of your Kubernetes environment. Consider these points carefully to determine the optimal use of OKE self-managed nodes in your deployments. 03:30 Lois: What do we need to consider before creating a self-managed node and integrating it into a cluster? Mahendra: There are two crucial aspects to address. Firstly, you need to confirm that the cluster to which you plan to add a self-managed node is configured appropriately. Secondly, it's essential to choose the right image for the compute instance hosting the self-managed node. 03:53 Nikita: Can you dive a little deeper into these prerequisites? Mahendra: To successfully integrate a self-managed node into your cluster, you must ensure that the cluster is an enhanced cluster. This is a crucial prerequisite for the addition of self-managed nodes. The flannel CNI plugin for pod networking should be utilized, not the VCN-native pod networking CNI plugin. This ensures optimal pod networking for your self-managed nodes. The control plane nodes of the cluster must be running Kubernetes version 1.25 or later. This is essential for compatibility and optimal performance. Lastly, maintain compatibility between the Kubernetes version on control plane nodes ...
    Show more Show less
    16 mins

What listeners say about Oracle University Podcast

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.