• A view on

  • By: Lonza
  • Podcast
  • Summary

  • Discoveries in technology, medicine, and nutrition are emerging with accelerating speed and improving our health and quality of life. Brought to you by Lonza, “A View On” podcast is a series of short conversations with industry leaders. Join us to discuss new trends that are impacting scientific research, drug discovery and business. The series of monthly conversations with pharma, biotech and nutrition leaders from across industry and academia covers a wide range of topics from 3D bioprinting to therapeutic cannabinoids. In under ten minutes, each podcast takes the audience on a rapid but deep dive into an exciting development that promises to profoundly change or even revolutionize healthcare.
    Copyright 2020 All rights reserved.
    Show more Show less
Episodes
  • EPISODE 10: Drug Bioavailability Enhancement
    Mar 5 2024

    Simulating the Journey of Oral Medications: A Leap Towards Personalized Medicine

    In this episode, we are joined by Deanna Mudie, a senior principal engineer at Lonza, and John DiBella, president of PBPK & Cheminformatics at Simulations Plus, to discuss new techniques in enhancing the bioavailability of drugs.

    When you swallow a pill, have you ever pondered the intricate journey it undertakes to deliver its therapeutic effect? This voyage, crucial for the drug's effectiveness, is at the heart of pharmaceutical R&D's quest to enhance bioavailability - the proportion of the drug that enters circulation and reaches the target area.

    By simulating how drugs interact with the body, scientists can optimize therapeutic outcomes by tailoring medications to the needs of individual patients. This approach promises a future where drugs are not only more effective but also safer, with reduced side effects. Listen as we delve into the cutting-edge world of Physiologically Based Pharmacokinetic (PBPK) modeling. These computer models integrate factors like gastrointestinal physiology and population characteristics, shedding light on how drugs behave in various body systems without the need for extensive patient testing.

    Curious to Know More?

    Join us in this conversation hosted by Martina Hestericová with Lonza's Deanna Mudie and Simulations Plus's John DiBella as they unveil the potential of PBPK modeling to revolutionize drug development and personalized medicine.

    KEY TERMS IN CONTEXT:

    In the context of pharmaceuticals, drug bioavailability refers to the proportion of a drug that enters the circulation when introduced into the body and is thereby able to have an active effect. It's a critical factor in determining the drug's effectiveness, as it measures how much of a drug in a dosage form (like a tablet or injection) becomes available at the target site of action.

    PBPK modeling is a sophisticated computational modeling technique used to predict the absorption, distribution, metabolism, and excretion (ADME) of drugs within animals and humans. This approach aids in understanding a drug's bioavailability and supports the design of more effective and safer drug therapies.

    Gastrointestinal Physiology refers to the study of the functions and processes of the digestive system or gastrointestinal (GI) tract. In the context of PBPK modeling, understanding gastrointestinal physiology is crucial for predicting how a drug is absorbed into the body, especially for orally administered medications. It includes factors like stomach acid levels, GI transit time, and the surface area available for absorption.

    "In silico" refers to the use of computer simulations or digital analyses to conduct experiments or procedures virtually rather than in a laboratory or real-world setting. In silico tools in drug development include software and algorithms used for modeling and simulation, such as PBPK models, which allow researchers to predict how drugs interact with animals and humans, aiding in drug design, testing, and the customization of therapies for personalized medicine.

    Show more Show less
    31 mins
  • EPISODE 9: Capsules for Targeted Therapy Delivery
    Jan 10 2024

    Capsules for Targeted Therapy: A Game-Changer in Modern Medicine 

    In this episode we are joined by Vincent Jannin, Lonza's R&D Director, to explore Enprotect, the Award-Nominated Capsule Technology. 

    Imagine starting your day with a simple capsule that goes beyond simply dissolving in your stomach to reach the place in your body where it is needed most before releasing its medicine. That’s just what Lonza’s Enprotect enteric capsules do. They are designed to release medication directly into the small intestine, which represents a significant leap in pharmaceutical delivery. They improve patient compliance without increasing production costs and offer targeted delivery for specific therapies such as live biotherapeutic products. This targeted approach is crucial for treatments that require local delivery, for example for Crohn's disease, exocrine pancreatic insufficiency, or Clostridium difficile infection. 

     

    In this episode we hear from Vincent Jannin about how advances in polymer science have ushered in this new era of capsules capable of targeted drug delivery. This marvel of modern medicine combines the fields of chemistry, nanoscience, biology, and physics. The creation of a bilayer capsule—comprised of a structural layer for shape and a functional layer for targeted release—both required the development of new technologies and could itself serve as an enabling technology for future therapies. 

     

    Vincent Jannin and his team have published several peer-reviewed studies in open access scientific journals, which were mentioned in the podcast: 

    • In Vivo Evaluation of a Gastro-Resistant Enprotect Capsule under Postprandial Conditions (https://www.mdpi.com/1999-4923/15/11/2576) 
    • In Vivo Evaluation of a Gastro-Resistant HPMC-Based “Next Generation Enteric” Capsule (https://www.mdpi.com/1999-4923/14/10/1999) 
    • In vitro evaluation of the gastrointestinal delivery of acid-sensitive pancrelipase in a next generation enteric capsule using an exocrine pancreatic insufficiency disease model (https://www.sciencedirect.com/science/article/pii/S0378517322009966) 

    Curious to Know More? 

    Join us this episode as we explore the journey from a simple capsule to a sophisticated drug delivery system and how this advancement reflects a remarkable fusion of science and innovation. Discover how the Enprotect technology not only offers hope for more effective treatments but also exemplifies the relentless pursuit of medical advancement for the benefit of patients everywhere.  

     

    KEY TERMS IN CONTEXT: 

    An enteric capsule is a type of capsule specifically designed to bypass the acidic environment of the stomach and release its contents into the small intestine. The term 'enteric' relates to the small intestine. These capsules are formulated to remain intact in the stomach and dissolve only when they reach the more neutral pH levels of the intestine, ensuring targeted drug delivery. 

    Enteric polymers are materials used in the construction of enteric capsules. They are chosen for their ability to withstand acidic conditions (like those in the stomach) and dissolve at higher pH levels like those found in the small intestine. HPMC Acetate Succinate is an example of an enteric polymer used for the outer layer of the capsule to ensure the treatment’s proper dissolution and release in the intestine. 

    Live Biotherapeutics (LBPs) refer to live microorganisms used for therapeutic purposes. They are designed to interact with the human microbiome, particularly in the small intestine, and are sensitive to stomach environments. The protection LBPs need before their release in the desired intestinal location is facilitated by specialized capsules. 

    Fecal Material Transfer refers to a medical treatment involving the transfer of fecal matter from a healthy donor to a patient, often used for conditions like Clostridium difficile infections. The podcast highlighted the potential use of enteric capsules for the delivery of such treatments directly to the small intestine, thereby offering an alternative to more invasive procedures. 

    Show more Show less
    26 mins
  • EPISODE 8: A View On Particle Identification
    Nov 14 2023

    Embark on a microscopic journey into particle identification — the unsung hero of pharmaceutical safety — and uncover how this vital process shields us from unseen threats in every single medication we take.

    Show more Show less
    25 mins

What listeners say about A view on

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.