Episodios

  • 206: The people who keep you standing (50 Operators share the systems that keep them happy, part 2)
    Feb 10 2026
    Pressure at work rarely stays contained within the job. It spills into family life, friendships, and daily relationships. I asked 50 operators how they stay happy while managing responsibility at work and at home. This 3 part series – titled “50 Operators share the systems that keep them happy” explores each of these layers through the lived experience of operators who feel the same pressure you probably feel right now. Today we continue with part 2: connection, the relationships that recharge you and keep you standing when the work would otherwise knock you sideways.We’ll hear from 17 people and we’ll cover:(00:00) - Teaser (02:00) - In This Episode (04:30) - Eric Holland: Limiting Slack and Prioritizing Family Time (05:33) - Meg Gowell: Shared Family Routines (08:31) - David Joosten: Filtering Reactive Work So Time Stays With Family (10:30) - Aboli Gangreddiwar: Designing Work to Enable Family Travel (12:01) - Kevin White: Separating Career Drive From Family Identity (13:42) - Joshua Kanter: Daily Family Rituals (18:07) - Gab Bujold: Daily Check-Ins With a Trusted Work Partner (22:30) - Anna Leary: Treating Workload Stress as a Shared Problem (24:31) - Angela Rueda: Shared Problem Solving Conversations (26:50) - Blair Bendel: Using In Person Conversations to Stay Grounded (29:28) - Matthew Castino: Work Satisfaction Correlates Strongly With Team Relationships (33:17) - Aditi Uppal: Connection as a Feedback Loop (35:48) - Alison Albeck Lindland: One Social System Across Work and Life (37:34) - Rajeev Nair: Human Bonds Absorb Pressure Before Burnout (40:12) - Chris O’Neil: Filtering Work Through People and Problems That Matter (42:24) - Rebecca Corliss: Creativity as a Shared Emotional Outlet (44:24) - Moni Oloyede: Teaching as a Living Relationship (45:50) - OutroConnection starts with who you protect time for. Our first guest begins there, shaping his work around people who refill him and drawing hard lines around anything that steals those moments away.Eric Holland: Limiting Slack and Prioritizing Family TimeFirst up is Eric Holland, a fractional PMM based in Pennsylvania, and the co-host of the We’re not Marketers Podcast. He’s also a dad and runs a retail apparel startup. Eric shapes his happiness around people before tasks. He pares his work down to projects shared with colleagues he enjoys being around, and that choice changes the texture of his days. Conversations feel easier. Meetings end with momentum instead of fatigue. You can hear a quiet confidence in how he describes work that feels relational rather than transactional.Family anchors that perspective in a very physical way. Nearly every weekend, from late November through Christmas, belongs to his ten-month-old son. These are not abstract intentions. They are mornings that smell like coffee and pine needles, afternoons on cold sidewalks, and evenings defined by routine rather than inboxes. Time with his son creates emotional weight that carries into the workweek and keeps priorities visible when deadlines start to blur.Eric also draws a firm boundary around digital proximity. Slack does not live on his phone, and that decision protects the moments where connection needs full attention. The habit most people recognize, checking messages during dinner or while holding a child, never has a chance to form. Presence becomes simpler when tools stay in their place.The system he describes comes together through a few concrete moves that many people quietly avoid:He limits work to collaborators who feel generous with energy.He reserves weekends for repeated family rituals that mark time.He removes communication tools from personal spaces where they dilute focus.Eric captures the point with a line that carries practical weight.“Delete Slack off your phone.”That sentence signals care for the relationships that actually hold you upright. Attention stays where your body is, and connection grows from that consistency.Key takeaway: Strong connections protect long-term happiness at work. Choose collaborators who give energy, protect repeated time with family and friends, and keep work tools out of moments that deserve your full presence.Meg Gowell: Shared Family RoutinesNext up is Meg Gowell, Head of Marketing at Elly and former Director of Growth Marketing at Typeform and Appcues. She’s also a mom of 3.Remote work compresses everything into the same physical space. Meetings happen steps away from the kitchen. Notifications follow you into the evening. Meg treats that compression as something that requires active design. She and her husband both work remotely, so separation never happens by accident. It happens because they decide when work stops and family time starts, and they repeat that decision every day.That discipline shows up in how she leads at Typeform. An international team creates constant overlap and constant absence at the same time. Someone is always offline. Someone is always mid-day. Ideas surface at inconvenient ...
    Más Menos
    48 m
  • 205: The daily infrastructure behind sustainable careers (50 Operators share the systems that keep them happy, part 1)
    Feb 3 2026
    Careers place a ton of demand on energy and attention way before results start to stabilize. Many operators discover that health and routine determine how long they can operate at a high level.I spoke with 50 people working in martech and operations about how they stay happy under pressure. This 3 part series – titled “50 Operators share the systems that keep them happy” explores each of these layers through the lived experience of operators who feel the same pressure you probably feel right now.Today we start with part 1: stability through routines, boundaries, and systems that protect the body and mind. We’ll hear from 15 people:(00:00) - Teaser (01:05) - Intro (01:30) - In This Episode (04:09) - Austin Hay: Building Non Negotiables (08:06) - Sundar Swaminathan: Systems That Prevent Stress (12:33) - Elena Hassan: Normalizing Stress (14:32) - Sandy Mangat: Managing Energy (16:31) - Constantine Yurevich: Designing Work That Matches Personal Energy (19:05) - Keith Jones: Intentional Work Rhythms (23:58) - Olga Andrienko: Daily Health Routines (26:06) - Sarah Krasnik Bedell: Outdoor Routines (27:21) - Zach Roberts: Physical Reset Rituals Outside Work (28:57) - Jane Menyo: Recovery Cycles (31:56) - Angela Vega: Chosen Challenges and Recovery Cycles (36:09) - Megan Kwon: Presence Built Into the Day (37:50) - Nadia Davis: Calendar Discipline (39:36) - Henk-jan ter Brugge: Planning the Week as a Constraint System (43:15) - Ankur Kothari: Personal Metrics (44:07) - OutroAustin Hay: Building Non NegotiablesOur first guest is Austin Hay, he’s a co-founder, a teacher, a martech advisor, but he’s also a husband, a dog dad, a student, water skiing fanatic, avid runner, a certified financial planner, and a bunch more stuff... Daily infrastructure shows up through repetition, discipline, and choices that protect energy before anything else competes for it. Austin grounds happiness in curiosity, but that curiosity only thrives when supported by sleep, movement, and time that belongs to no employer. Learning stays fun because it is not treated as another performance metric. It remains part of who he is rather than something squeezed into the margins of an already crowded day.Mental and physical health shape his schedule in visible ways. Austin treats them as operating requirements rather than aspirations. His days include a short list of behaviors that carry disproportionate impact:Regular sleep with a consistent bedtime.Exercise that creates physical fatigue and mental quiet.Relationships that exist entirely outside work.Hobbies and games that feel restorative rather than productive.These habits rarely earn praise, which explains why they erode first under pressure. In his twenties, Austin chased work, clients, and money with intensity. He told himself the rest would come later. That promise held eventually, but the gap years carried a cost. He remembers moments of looking in the mirror and feeling uneasy about the life he was assembling, despite checking every external box.Trade-offs now anchor his thinking. Austin frames decisions as equations involving time, energy, and outcomes. Goals demand inputs, and inputs consume limited resources. Avoiding that math leads to exhaustion and resentment. Facing it creates clarity. Many people resist this step because it forces hard choices into daylight. The industry rewards the appearance of doing everything, even when the math never works.“I view a lot of decisions and outcomes in life as trade-offs. At the end of the day, that’s what most things boil down to.”Sleep makes the equation tangible. Austin aims for bed around 9 or 9:30 each night because his mornings require focus, training, and sustained energy. He needs seven and a half hours of sleep to function well. That requirement dictates the rest of the day. Social plans adjust. Work compresses. Goals remain achievable because the system supports them.He defines what he wants to pursue.He calculates the energy required.He locks in non negotiables that keep the math honest.That structure removes constant negotiation with himself. The system holds even when motivation dips or distractions multiply.Key takeaway: Daily infrastructure depends on non negotiables that protect sleep, health, and energy. Clear priorities, visible trade-offs, and repeatable routines create careers that stay durable under pressure.Sundar Swaminathan: Systems That Prevent StressNext up is Sundar Swaminathan, Former Head of Marketing Science at Uber, Author & Host of the experiMENTAL Newsletter & Podcast. He’s also a husband, a father and a well traveled home chef, amateur chess master.Stress prevention sits at the center of Sundar’s daily system for staying happy and effective at work. A concentrated period of personal loss collapsed any illusion that stress deserved patience or tolerance. Three deaths in three weeks compressed time, sharpened perspective, and forced a reassessment of what stress actually costs. Stress drains ...
    Más Menos
    47 m
  • 204: Phyllis Fang: Trust infrastructure and freakish curiosity as career growth levers
    Jan 27 2026
    What’s up everyone, today we have the pleasure of sitting down with Phyllis Fang, Head of Marketing at Transcend.(00:00) - Intro (01:23) - In This Episode (04:13) - Uber Safety Marketing Shaped A Trust First Marketing Playbook (10:12) - How Permissioned Data Systems Power Personalization at Scale (15:22) - How Consent Infrastructure Improves Personalization Performance (19:20) - How to Audit Consent and Compliance in Marketing Data (23:24) - What Consent Management Does Across AI Data Lifecycles (28:29) - How to Build a Marketing Trust Stack (30:49) - Consent Management as a Revenue Lever (35:10) - Designing Marketing Teams for Freakish Curiosity (41:19) - Skills That Define Great Marketing Operations (45:33) - Why System Level Marketing Experience Builds Career Leverage (50:13) - System for HappinessSummary: Phyllis learned how fragile marketing becomes when systems move faster than trust while working between lifecycle execution and product marketing at Uber. Safety work around emergencies, verification, and COVID forced messages to withstand scrutiny from riders, drivers, regulators, and the public. That experience shapes how she approaches consent and personalization today. Permission signals decide what data moves and how confidently teams can act. When those signals stay connected, work holds. When they drift, confidence erodes across systems, teams, and careers.About PhyllisPhyllis Fang leads marketing at Transcend, where enterprise growth depends on clear choices about data, consent, and accountability. Her work shapes how privacy becomes part of how companies operate, communicate, and earn confidence at scale.Earlier in her career, she spent several years at Uber, working on global product marketing for safety during periods of intense public scrutiny. She helped bring new safety features to market at moments when user behavior, policy decisions, and brand credibility were tightly linked. The work required precision, restraint, and an understanding of how people respond when stakes feel personal.Across roles in e-commerce, lifecycle marketing, and platform strategy, a pattern holds. Fang gravitates toward systems that must work under pressure and messages that must hold up in practice. Her career reflects a belief that marketing earns its place when it reduces uncertainty and helps people move forward with confidence.Uber Safety Marketing Shaped A Trust First Marketing PlaybookTrust-focused marketing depends on people who can move between systems work and narrative work without losing credibility in either space. Phyllis built that fluency by operating inside lifecycle programs while also leading product marketing initiatives at Uber. One side of that work lived in tools, triggers, and delivery logic. The other side lived in rooms where progress depended on persuasion, alignment, and patience. That dual exposure trained her to see how fragile big ideas become when they cannot survive real execution.Lifecycle and marketing operations reward control and repeatability. Product marketing inside a global organization rewards influence and restraint. Phyllis describes moments where moving a single initiative forward required negotiation across regions, channels, and internal politics. Every message faced review from people who owned distribution and reputation in their markets. Messaging tightened quickly because weak logic did not survive long. Campaigns became sharper because every assumption had to hold up under pressure.“We were all in the same company, but I still had to convince people to resource things differently or prioritize a message.”Safety marketing pushed that pressure even further. The work focused on features designed for rare, high-stakes moments, including emergency assistance and large-scale verification during COVID. Measurement shifted away from habitual usage and toward confidence and credibility. The audience expanded well beyond active users. Phyllis had to speak clearly to riders, drivers, regulators, and the general public at the same time. Each group carried different fears, incentives, and consequences. Messaging succeeded only when it respected those differences without creating confusion.That mindset carries directly into her work at Transcend. Privacy and consent buyers often sit in legal or compliance roles where personal and professional risk overlap. These buyers read closely and remember details. Phyllis explains that proof needs to operate on two levels at once. It must withstand careful review, and it must connect to human motivation. Career safety, internal credibility, and long-term reputation shape decisions more than feature depth ever will.“You have to understand the human behind the role, because their motivation usually has very little to do with your product.”Many martech teams still lean on urgency and fear to move deals forward. That habit collapses quickly in trust-driven categories. Buyers trained to manage risk respond to clarity, evidence...
    Más Menos
    54 m
  • 203: Jordan Resnick: How to distinguish fake traffic from real machine customers
    Jan 20 2026
    What’s up everyone, today we have the pleasure of sitting down with Jordan Resnick, Senior Director, Marketing Operations at CHEQ.(00:00) - Intro (01:10) - In This Episode (03:47) - Demystifying Go-to-Market Security (06:14) - The Fake Traffic Surge (08:14) - How the Dead Internet Theory Connects to Bot Traffic Growth (12:31) - How to Detect Bot Traffic Through Behavioral Patterns (16:13) - How Go To Market Teams Reduce Fake Traffic And Lead Pollution (30:03) - Preventing Fake Leads From Reaching Sales (34:17) - How to Calculate Revenue Impact of Fake Traffic (38:09) - How to Report Marketing Performance When Bot Traffic Skews Metrics (43:58) - Trust Erosion From Fake Traffic (49:49) - How Marketing Ops Should Adapt Systems for Machine Customers (53:59) - Funnel Audits With Security Teams to Reduce Bot Traffic (57:47) - Detachment as a Career Survival SkillSummary: Distinguishing fake traffic from real machine customers starts where metrics break down. Jordan shows how AI-driven bots now scroll, click, submit forms, and pass validation while quietly filling dashboards with activity that never turns into revenue. The tell is behavioral texture. Sessions move too fast. Paths skip learning. Engagement appears without intent. Real machine customers behave with rhythm and purpose, returning, evaluating, integrating. Teams that recognize the difference lock down the conversion point, block synthetic demand before it reaches core systems, keep sales calendars clean, and only report once traffic has earned trust.About JordanJordan Resnick is Senior Director of Marketing Operations at CHEQ, where he leads the systems, data, and workflows that support go-to-market security across a global customer base. His work sits at the intersection of marketing operations, revenue operations, attribution, automation, and analytics, with a clear focus on building infrastructure that holds up under scale and scrutiny.Before CHEQ, Jordan led marketing operations at Atlassian, where he supported complex GTM motions across multiple business units and global markets. Earlier roles at Perkuto and MERGE combined hands-on execution with customer-facing leadership, integration design, and process ownership. His career also includes more than a decade as an independent operator, delivering marketing operations, automation, content, and technical solutions across a wide range of organizations. Jordan brings a deeply practical, execution-driven perspective shaped by years of building, fixing, and maintaining real systems in production environments.Demystifying Go-to-Market SecurityGo-to-market security shows up when growth metrics look strong and revenue outcomes feel weak. Marketing operations teams live in that gap every day. Jordan describes GTM security as a business-facing discipline that protects the integrity of acquisition, funnel data, and downstream decisions that depend on clean signals. The work sits inside marketing operations because that is where traffic quality, lead flow, and revenue attribution converge.When asked about how GTM security differs from traditional fraud prevention, Jordan frames the difference through decision-making pressure. Security teams historically focus on defending infrastructure and minimizing exposure. Marketing ops teams focus on maintaining momentum while spending real budget. GTM security evaluates risk in context, with an eye toward revenue impact, forecasting accuracy, and operational trust across teams that rely on shared data.Jordan grounds the concept in specific failure points that operators recognize immediately. GTM security examines where bad inputs quietly enter systems and multiply.Paid traffic that inflates sessions without creating buyers.Analytics skewed by automated interactions that look legitimate.Form submissions that pass validation and still never convert.Sales pipelines filled with activity that drains time and morale.Each issue compounds because systems assume the data is real. Teams keep optimizing against numbers that feel precise and still point in the wrong direction.“You are putting money into driving people to your website, and the first question should be how many of those people are real and able to buy.”Invalid traffic behaves like a contaminant. It flows from acquisition into attribution models, forecasting tools, CRMs, and revenue dashboards. Marketing celebrates growth, sales chases shadows, and finance questions confidence in the entire funnel. The problem rarely announces itself as a security incident. It surfaces as confusion, missed targets, and internal friction.GTM security matters because it gives marketing ops teams a framework to protect the inputs that shape every downstream decision. The work runs alongside traditional security while staying anchored in go-to-market outcomes. That way you can spend with confidence, trust your reporting, and hand sales teams signals grounded in real buying behavior.Key takeaway: Treat go-to-market security as ...
    Más Menos
    1 h y 2 m
  • 202: Aleyda Solís: AI search crawlability and why your site’s technical foundations decide your visibility
    Jan 13 2026
    What’s up everyone, today we have the honor of sitting down with Aleyda Solís, SEO and AI search consultant. (00:00) - Intro (01:17) - In This Episode (04:55) - Crawlability Requirements for AI Search Engines (12:21) - LLMs As A New Search Channel In A Multi Platform Discovery System (18:42) - AI Search Visibility Analysis for SEO Teams (29:17) - Creating Brand Led Informational Content for AI Search (35:51) - Choosing SEO Topics That Drive Brand-Aligned Demand (45:50) - How Topic Level Analysis Shapes AI Search Strategy (50:01) - LLM Search Console Reporting Expectations (52:09) - Why LLM Search Rewards Brands With Real Community Signals (55:12) - Prioritizing Work That Matches Personal PurposeSummary: AI search is rewriting how people find information, and Aleyda explains the shift with clear, practical detail. She has seen AI crawlers blocked without anyone noticing, JavaScript hiding full sections of sites, and brands interpreting results that were never based on complete data. She shows how users now move freely between Google, TikTok, Instagram, and LLMs, which pushes teams to treat discovery as a multi-platform system. She encourages you to verify your AI visibility, publish content rooted in real customer language, and use topic clusters to anchor strategy when prompts scatter. Her closing point is simple. Community chatter now shapes authority, and AI models pay close attention to it.About AleydaAleyda Solís is an international SEO and AI search optimization consultant, speaker, and author who leads Orainti, the boutique consultancy known for solving complex, multi-market SEO challenges. She’s worked with brands across ecommerce, SaaS, and global marketplaces, helping teams rebuild search foundations and scale sustainable organic growth.She also runs three of the industry’s most trusted newsletters; SEOFOMO, MarketingFOMO, and AI Marketers, where she filters the noise into the updates that genuinely matter. Her free roadmaps, LearningSEO.io and LearningAIsearch.com, give marketers a clear, reliable path to building real skills in both SEO and AI search.Crawlability Requirements for AI Search EnginesCrawlability shapes everything that follows in AI search. Aleyda talks about it with the tone of someone who has seen far too many sites fail the basics. AI crawlers behave differently from traditional search engines, and they hit roadblocks that most teams never think about. Hosting rules, CDN settings, and robots files often permit Googlebot but quietly block newer user agents. You can hear the frustration in her voice when she describes audit after audit where AI crawlers never reach critical sections of a site."You need to allow AI crawlers to access your content. The rules you set might need to be different depending on your context."AI crawlers also refuse to process JavaScript. They ingest raw markup and move on. Sites that lean heavily on client-side rendering lose entire menus, product details, pricing tables, and conversion paths. Aleyda describes this as a structural issue that forces marketers to confront their technical debt. Many teams have spent years building front-ends with layers of JavaScript because Google eventually figured out how to handle it. AI crawlers skip that entire pipeline. Simpler pages load faster, reveal hierarchy immediately, and give AI models a complete picture without extra processing.Search behavior adds new pressure. Aleyda points to OpenAI’s published research showing a rise in task-oriented queries. Users ask models to complete goals directly and skip the page-by-page exploration we grew up optimizing for. You need clarity about which tasks intersect with your offerings. You need to build content that satisfies those tasks without guessing blindly. Aleyda urges teams to validate this with real user understanding because generic keyword tools cannot describe these new behaviors accurately.Authority signals shift too. Mentions across credible communities carry weight inside AI summaries. Aleyda explains it as a natural extension of digital PR. Forums, newsletters, podcasts, social communities, and industry roundups form a reputation map that AI crawlers use as context. Backlinks still matter, but mentions create presence in a wider set of conversations. Strong SEO programs already invest in this work, but many teams still chase link volume while ignoring the broader network of references that shape brand perception.Measurement evolves alongside all of this. Aleyda encourages operators to treat AI search as both a performance channel and a visibility channel. You track presence inside responses. You track sentiment and frequency. You monitor competitors that appear beside you or ahead of you. You map how often your brand appears in summaries that influence purchase decisions. Rankings and click curves do not capture the full picture. A broader measurement model captures what these new systems actually distribute.Key takeaway: Build crawlability for AI...
    Más Menos
    1 h
  • 201: Scott Brinker: If he reset his career today, where would he focus?
    Jan 6 2026
    What’s up everyone, today we have the honor of sitting down with the legendary Scott Brinker, a rare repeat guest, the Martech Landscape creator, the Author of Hacking Marketing, The Godfather of Martech himself.(00:00) - Intro (01:12) - In This Episode (05:09) - Scott Brinker’s Guidance For Marketers Rethinking Their Career Path (11:27) - If You Started Over in Martech, What Would You Learn First (16:47) - People Side (21:13) - Life Long Learning (26:20) - Habits to Stay Ahead (32:14) - Why Deep Specialization Protects Marketers From AI Confusion (37:27) - Why Technical Skills Decide the Future of Your Marketing Career (41:00) - Why Change Leadership Matters More Than Technical AI Skills (47:11) - How MCP Gives Marketers a Path Out of Integration Hell (52:49) - Why Heterogeneous Stacks are the Default for Modern Marketing Teams (54:51) - How To Build A Martech Messaging BS Detector (59:37) - Why Your Energy Grows Faster When You Invest in Other PeopleSummary: Scott Brinker shares exactly where he would focus if he reset his career today, and his answer cuts through the noise. He’d build one deep specialty to judge AI’s confident mistakes, grow cross-functional range to bridge marketing and engineering, and lean into technical skills like SQL and APIs to turn ideas into working systems. He’d treat curiosity as a steady rhythm instead of a rigid routine, learn how influence actually moves inside companies, and guide teams through change with simple, human clarity. His take on composability, MCP, and vendor noise rounds out a clear roadmap for any marketer trying to stay sharp in a chaotic industry.About ScottScott has spent his career merging the world of marketing and technology and somehow making it look effortless. He co-founded ion interactive back when “interactive content” felt like a daring experiment, then opened the Chief Marketing Technologist blog in 2008 to spark a conversation the industry didn’t know it needed. He sketched the very first Martech Landscape when the ecosystem fit on a single page with about 150 vendors, and later brought the MarTech conference to life in 2014, where he still shapes the program. Most recently, he guided HubSpot’s platform ecosystem, helping the company stay connected to a martech universe that’s grown to more than 15,000 tools. Today, Scott continues to helm chiefmartec.com, the well the entire industry keeps returning to for clarity, curiosity, and direction.Scott Brinker’s Guidance For Marketers Rethinking Their Career PathMid career marketers keep asking themselves whether they should stick with the field or throw everything out and start fresh. Scott relates to that feeling, and he talks about it with a kind of grounded humor. He describes his own wandering thoughts about running a vineyard, feeling the soil under his shoes and imagining the quiet. Then he remembers the old saying about wineries, which is that the only guaranteed outcome is a smaller bank account. His story captures the emotional drift that comes with burnout. People are not always craving a new field. They are often craving a new relationship with their work.Scott moves quickly to the part that matters. He directs his attention to AI because it is reshaping the field faster than many teams can absorb. He explains that someone could spend every hour of the week experimenting and still only catch a fraction of what is happening. He sees that chaos as a signal. Overload creates opportunity, and the people who step toward it gain an advantage. He urges mid career operators to lean into the friction and build new muscle. He even calls out how many people will resist change and cling to familiar workflows. He views that resistance as a gift for the ones willing to explore.“People who lean into the change really have the opportunity to differentiate themselves and discover things.”Scott brings back a story from a napkin sketch. He drew two curves, one for the explosive pace of technological advancement and one for the slower rhythm of organizational change. The curves explain the tension everyone feels. Teams operate on slower timelines. Tools operate on faster ones. The gap between those curves is wide, and professionals who learn to navigate that space turn themselves into catalysts inside their companies. He sees mid career marketers as prime candidates for this role because they have enough lived experience to understand where teams stall and enough hunger to explore new territory.Scott encourages people to channel their curiosity into specific work. He suggests treating AI exploration like a practice and not like a trend. A steady rhythm of experiments helps someone grow their internal influence. Better experiments produce useful artifacts. These artifacts often become internal proof points that accelerate change. He believes the next wave of opportunity belongs to people who document what they try, translate what they learn, and help their companies adapt at a ...
    Más Menos
    1 h y 4 m
  • 200: Matthew Castino: How Canva measures marketing
    Dec 16 2025
    What’s up everyone, today we have the pleasure of sitting down with Matthew Castino, Marketing Measurement Science Lead @ Canva.(00:00) - Intro (01:10) - In This Episode (03:50) - Canva’s Prioritization System for Marketing Experiments (11:26) - What Happened When Canva Turned Off Branded Search (18:48) - Structuring Global Measurement Teams for Local Decision Making (24:32) - How Canva Integrates Marketing Measurement Into Company Forecasting (31:58) - Using MMM Scenario Tools To Align Finance And Marketing (37:05) - Why Multi Touch Attribution Still Matters at Canva (42:42) - How Canva Builds Feedback Loops Between MMM and Experiments (46:44) - Canva’s AI Workflow Automation for Geo Experiments (51:31) - Why Strong Coworker Relationships Improve Career SatisfactionSummary: Canva operates at a scale where every marketing decision carries huge weight, and Matt leads the measurement function that keeps those decisions grounded in science. He leans on experiments to challenge assumptions that models inflate. As the company grew, he reshaped measurement so centralized models stayed steady while embedded data scientists guided decisions locally, and he built one forecasting engine that finance and marketing can trust together. He keeps multi touch attribution in play because user behavior exposes patterns MMM misses, and he treats disagreements between methods as signals worth examining. AI removes the bottlenecks around geo tests, data questions, and creative tagging, giving his team space to focus on evidence instead of logistics. About MatthewMatthew Castino blends psychology, statistics, and marketing intuition in a way that feels almost unfair. With a PhD in Psychology and a career spent building measurement systems that actually work, he’s now the Marketing Measurement Science Lead at Canva, where he turns sprawling datasets and ambitious growth questions into evidence that teams can trust.His path winds through academia, health research, and the high-tempo world of sports trading. At UNSW, Matt taught psychology and statistics while contributing to research at CHETRE. At Tabcorp, he moved through roles in customer profiling, risk systems, and US/domestic sports trading; spaces where every model, every assumption, and every decision meets real consequences fast. Those years sharpened his sense for what signal looks like in a messy environment.Matt lives in Australia and remains endlessly curious about how people think, how markets behave, and why measurement keeps getting harder, and more fun.Canva’s Prioritization System for Marketing ExperimentsCanva’s marketing experiments run in conditions that rarely resemble the clean, product controlled environment that most tech companies love to romanticize. Matthew works in markets filled with messy signals, country level quirks, channel specific behaviors, and creative that behaves differently depending on the audience. Canva built a world class experimentation platform for product, but none of that machinery helps when teams need to run geo tests or channel experiments across markets that function on completely different rhythms. Marketing had to build its own tooling, and Matthew treats that reality with a mix of respect and practicality.His team relies on a prioritization system grounded in two concrete variables.SpendUncertaintyLarge budgets demand measurement rigor because wasted dollars compound across millions of impressions. Matthew cares about placing the most reliable experiments behind the markets and channels with the biggest financial commitments. He pairs that with a very sober evaluation of uncertainty. His team pulls signals from MMM models, platform lift tests, creative engagement, and confidence intervals. They pay special attention to MMM intervals that expand beyond comfortable ranges, especially when historical spend has not varied enough for the model to learn. He reads weak creative engagement as a warning sign because poor engagement usually drags efficiency down even before the attribution questions show up.“We try to figure out where the most money is spent in the most uncertain way.”The next challenge sits in the structure of the team. Matthew ran experimentation globally from a centralized group for years, and that model made sense when the company footprint was narrower. Canva now operates in regions where creative norms differ sharply, and local teams want more authority to respond to market dynamics in real time. Matthew sees that centralization slows everything once the company reaches global scale. He pushes for embedded data scientists who sit inside each region, work directly with marketers, and build market specific experimentation roadmaps that reflect local context. That way experimentation becomes a partner to strategy instead of a bottleneck.Matthew avoids building a tower of approvals because heavy process often suffocates marketing momentum. He prefers a model where teams follow shared principles, ...
    Más Menos
    56 m
  • 199: Anna Aubuchon: Moving BI workloads into LLMs and using AI to build what you used to buy
    Dec 9 2025
    What’s up everyone, today we have the pleasure of sitting down with Anna Aubuchon, VP of Operations at Civic Technologies.(00:00) - Intro (01:15) - In This Episode (04:15) - How AI Flipped the Build Versus Buy Decision (07:13) - Redrawing What “Complex” Means (12:20) - Why In House AI Provides Better Economics And Control (15:33) - How to Treat AI as an Insourcing Engine (21:02) - Moving BI Workloads Out of Dashboards and Into LLMs (31:37) - Guardrails That Keep AI Querying Accurate (38:18) - Using Role Based AI Guardrails Across MCP Servers (44:43) - Ops People are Creators of Systems Rather Than Maintainers of Them (48:12) - Why Natural Language AI Lowers the Barrier for First-Time Builders (52:31) - Technical Literacy Requirements for Next Generation Operators (56:46) - Why Creative Practice Strengthens Operational LeadershipSummary: AI has reshaped how operators work, and Anna lays out that shift with the clarity of someone who has rebuilt real systems under pressure. She breaks down how old build versus buy habits hold teams back, how yearly AI contracts quietly drain momentum, and how modern integrations let operators assemble powerful workflows without engineering bottlenecks. She contrasts scattered one-off AI tools with the speed that comes from shared patterns that spread across teams. Her biggest story lands hard. Civic replaced slow dashboards and long queues with orchestration that pulls every system into one conversational layer, letting people get answers in minutes instead of mornings. That speed created nerves around sensitive identity data, but tight guardrails kept the team safe without slowing anything down. Anna ends by pushing operators to think like system designers, not tool babysitters, and to build with the same clarity her daughter uses when she describes exactly what she wants and watches the system take shape.About AnnaAnna Aubuchon is an operations executive with 15+ years building and scaling teams across fintech, blockchain, and AI. As VP of Operations at Civic Technologies, she oversees support, sales, business operations, product operations, and analytics, anchoring the company’s growth and performance systems.She has led blockchain operations since 2014 and built cross-functional programs that moved companies from early-stage complexity into stable, scalable execution. Her earlier roles at Gyft and Thomson Reuters focused on commercial operations, enterprise migrations, and global team leadership, supporting revenue retention and major process modernization efforts.How AI Flipped the Build Versus Buy DecisionAI tooling has shifted so quickly that many teams are still making decisions with a playbook written for a different era. Anna explains that the build versus buy framework people lean on carries assumptions that no longer match the tool landscape. She sees operators buying AI products out of habit, even when internal builds have become faster, cheaper, and easier to maintain. She connects that hesitation to outdated mental models rather than actual technical blockers.AI platforms keep rolling out features that shrink the amount of engineering needed to assemble sophisticated workflows. Anna names the layers that changed this dynamic. System integrations through MCP act as glue for data movement. Tools like n8n and Lindy give ops teams workflow automation without needing to file tickets. Then ChatGPT Agents and Cloud Skills launched with prebuilt capabilities that behave like Lego pieces for internal systems. Direct LLM access removed the fear around infrastructure that used to intimidate nontechnical teams. She describes the overall effect as a compression of technical overhead that once justified buying expensive tools.She uses Civic’s analytics stack to illustrate how she thinks about the decision. Analytics drives the company’s ability to answer questions quickly, and modern integrations kept the build path light. Her team built the system because it reinforced a core competency. She compares that with an AI support bot that would need to handle very different audiences with changing expectations across multiple channels. She describes that work as high domain complexity that demands constant tuning, and the build cost would outweigh the value. Her team bought that piece. She grounds everything in two filters that guide her decisions: core competency and domain complexity.Anna also calls out a cultural pattern that slows AI adoption. Teams buy AI tools individually and create isolated pockets of automation. She wants teams to treat AI workflows as shared assets. She sees momentum building when one group experiments with a workflow and others borrow, extend, or remix it. She believes this turns AI adoption into a group habit rather than scattered personal experiments. She highlights the value of shared patterns because they create a repeatable way for teams to test ideas without rebuilding from scratch.She closes by urging operators to update their ...
    Más Menos
    1 h